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INVERSE PROBLEMS FOR

ABSTRACT EVOLUTION EQUATIONS II:
HIGHER ORDER DIFFERENTIABILITY FOR VISCOELASTICITY

ANDREAS KIRSCH AND ANDREAS RIEDER

Abstract. In this follow-up of [Inverse Problems 32 (2016) 085001] we generalize our
previous abstract results so that they can be applied to the viscoelastic wave equation
which serves as a forward model for full waveform inversion (FWI) in seismic imaging
including dispersion and attenuation. FWI is the nonlinear inverse problem of identifying
parameter functions of the viscoelastic wave equation from measurements of the reflected
wave field. Here we rigorously derive rather explicit analytic expressions for the Fréchet
derivative and its adjoint (adjoint state method) of the underlying parameter-to-solution
map. These quantities enter crucially Newton-like gradient decent solvers for FWI.
Moreover, we provide the second Fréchet derivative and a related adjoint as ingredients
to second-degree solvers.

1. Introduction

Full waveform inversion (FWI) is the leading-edge technique in geophysical exploration
using the full information content (amplitude and phase) of the seismic recordings to
reconstruct the parameters in the underlying wave propagation model, see, e.g, [6, 13].
Waves propagating in realistic material encounter dispersion and attenuation which have
to be taken into account by a viscoelastic model. There are several of these models
described in the literature, see [6, Chap. 5] for an overview and references and see [16,
Chap. 2] for how these models are related to each other. The model we consider here is
the viscoelastic wave equation in the velocity stress formulation based on the generalized
standard linear solid rheology, see (2) below.

In [10] we provided an abstract framework for the nonlinear inverse problem of FWI
which applies to the elastic but not directly to the viscoelastic wave equation. The present
paper is driven by the wish to slightly adjust our abstract framework such that it finally
fits to the viscoelastic equation. So we are indeed able to give analytic expressions for the
Fréchet derivative and its adjoint of the full waveform forward operator Φ which maps
the parameters of the viscoelatic model (density, wave speeds, scaling factors) to the wave
field.
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Moreover, we present the second Fréchet derivative of Φ which is needed for Newton-
like solvers of second degree, see, e.g., [8]. Second-degree methods are of interest for FWI
to mitigate an effect known as ‘cross-talk’ or ‘parameter trade-off’. These terms refer to
a coupling phenomenon: for some parameter combinations, the update of one parameter
value affects the other parameter values, see, e.g., [5] for a numerical demonstration.

For the reader’s convenience we now sketch our contribution in the context of second-
degree methods. Assume for the time being that Φ incorporates the measurement process
and let y be the measurements (seismograms). Then, FWI entails the solution of

Φ(p) = y

for the parameter vector p. The second-degree iteration of Hettlich and Rundell [8] starts
with a guess p0 and updates the current iterate pk by

(1a) pk+1 = pk + sk

where sk is a regularized solution to

(1b) Φ′(pk)s +
1

2
Φ′′(pk)[hk, s] = yk − Φ(pk).

The above needed value for hk is obtained by solving the Newton equation

(1c) Φ′(pk)h = yk − Φ(pk).

The two linear systems which determine sk are typically solved by iterative regularization
schemes like the Landweber or the conjugate gradient iterations. Their implementation
requires not only the evaluation of the first and second derivatives but also of the adjoint
operators. For all these objects we give explicit representations in a functional analytic
framework.

We need to emphasize that this equation-based approach to FWI differs slightly from
the usual optimization-based methods in geophysics where a misfit functional J is min-
imized by Newton-like techniques. Here the second derivative (’Hessian’) of J is needed
which is related to Φ′′ in the following (formal) way: Let J(p) = 1

2
‖y−Φ(p)‖2 (‖ · ‖ is a

Hilbert space norm for the ease presentation). Then,

J ′′(p)[p̂1, p̂2] = 〈H(p)p̂1, p̂2〉 with H(p)p̂ = Φ′(p)∗Φ(p)p̂− Φ′′(p)∗[p̂, ·](y − Φ(p)).

Our paper is organized as follows. In the next section we introduce the viscoelastic
model in its original formulation for three spatial dimensions. After a transformation of
the state variables we arrive at the version which we investigate in an abstract framework.
This is done in Section 3 where we will rely on [10]. Then, we return to the concrete
viscoelastic model and validate all required properties to apply the abstract results to
the full waveform forward operator Φ (Section 4). Our results cannot directly be applied
to the viscoelastic model in two spatial dimensions. Since our first numerical test will
doubtlessly be performed in the 2D setting we present the corresponding results in an
appendix.

Zeltmann [16] also considered a viscoelastic model using techniques akin to ours. In
principle, first order differentiability of Φ could have been obtained from his results as
well. However, this is an involved task indeed as his setting includes further and different
parameters. Moreover, our main objective was to validate second order differentiablity.
We therefore generalized our clear framework from [10] and the first order result is thus
merely a by-product.
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Finally we would like to mention that there are rather generic and formal derivations
of the second derivative in the geophysics literature, see [6, Chap. 9.3] and [7].

2. Viscoelasticity

The viscoelastic wave equation in the velocity stress formulation based on the gener-
alized standard linear solid (GSLS) rheology reads: In a Lipschitz domain D ⊂ R

3 we
determine the velocity field v : [0, T ]×D → R

3, the stress tensor σ : [0, T ]×D → R
3×3
sym,

and memory tensors ηl : [0, T ]×D → R
3×3
sym, l = 1, . . . , L, from the first-order system

ρ ∂tv = divσ + f in ]0, T [×D,(2a)

∂tσ = C
(
(1 + LτS)µ0, (1 + LτP)π0

)
ε(v) +

L∑

l=1

ηl in ]0, T [×D,(2b)

−τσ,l∂tηl = C
(
LτSµ0, LτPπ0

)
ε(v) + ηl, l = 1, . . . , L, in ]0, T [×D.(2c)

Here, f denotes the external volume force density and ρ is the mass density. The linear
maps C(m, p) for m, p ∈ R are defined as

(3) C(m, p) : R3×3 → R
3×3, C(m, p)M = 2mM+ (p− 2m) tr(M)I,

with I ∈ R
3×3 being the identity matrix and tr(M) denotes the trace of M ∈ R

3×3.
Further,

ε(v) =
1

2

[
(∇xv)

⊤ +∇xv
]

is the linearized strain rate. In formulation (2) two independent GSLS are used to describe
the propagation of pressure and shear waves (P- and S-waves). The parameters µ0 and π0

denote the relaxed P- and S-wave modulus, respectively. Further, τP and τS are scaling
factors for the relaxed moduli. They have been introduced for the first time by [1] and
are now widely used to quantify attenuation and phase velocity dispersion in viscoelastic
media, see e.g. [6, 14].

Wave propagation in viscoelastic media is frequency-dependent over a bounded fre-
quency band with center frequency ω0. Within this band the Q-factor, which is the
rate of the full energy over the dissipated energy, remains nearly constant. This fact is
used to determine the stress relaxation times τσ,l > 0 by a least-squares approach [2, 3]
where up to L = 5 relaxation mechanisms may be required. Now we obtain the following
frequency-dependent phase velocities of P- and S-waves:

(4) v2P =
π0

ρ
(1 + τPα) and v2S =

µ0

ρ
(1 + τSα) with α = α(ω0) =

L∑

l=1

ω2
0τ

2
σ,l

1 + ω2
0τ

2
σ,l

.

Full waveform inversion (FWI) in seismic imaging entails the inverse problem of recon-
structing the five spatially dependent parameters (ρ, vS, τS, vP, τP) from wave field mea-
surements.

Using the transformation



v

σ0

σ1
...
σL




:=




v

σ +
∑L

l=1 τσ,lηl

−τσ,1η1
...

−τσ,Lη1
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discovered and explored by Zeltmann [16] we reformulate (2) equivalently into

∂tv =
1

ρ
div
( L∑

l=0

σl

)
+

1

ρ
f in ]0, T [×D,(5a)

∂tσ0 = C
(
µ0, π0

)
ε(v) in ]0, T [×D,(5b)

∂tσl = C
(
LτSµ0, LτPπ0

)
ε(v)−

1

τσ,l

σl, l = 1, . . . , L, in ]0, T [×D.(5c)

Let X = L2(D,R3)× L2(D,R3×3
sym)

1+L. For suitable1 w = (w,ψ0, . . . ,ψL) ∈ X we define
the operators A, B, and Q mapping into X by

(6) Aw = −




div
(∑L

l=0ψl

)

ε(w)
...

ε(w)




, B−1w =




1
ρ
w

C
(
µ0, π0

)
ψ0

LC
(
τSµ0, τPπ0

)
ψ1

...

LC
(
τSµ0, τPπ0

)
ψL




, Qw =




0

0
1

τσ,1
ψ1

...
1

τσ,L
ψL




.

With these operators the system (5) can be rewritten as

Bu′(t) + Au(t) +BQu(t) = f(t)

where u = (v,σ0, . . . ,σL) and f = (f , 0, . . . , 0).
Please note: The five parameters to be reconstructed by FWI enter only the operator B

via, see (4),

(7) π0 =
ρ v2P

1 + τPα
and µ0 =

ρ v2S
1 + τSα

.

3. Abstract framework

We consider an abstract evolution equation in a Hilbert space X of the form

(8) Bu′(t) + Au(t) +BQu(t) = f(t), t ∈ ]0, T [, u(0) = u0,

under the following general hypotheses: T > 0, u0 ∈ X ,

B belongs to the Banach space L∗(X) = {J ∈ L(X) : J∗ = J} and satisfies
〈Bx, x〉X = 〈x,Bx〉X ≥ β‖x‖2X for some β > 0 and for all x ∈ X ,

A : D(A) ⊂ X → X is a maximal monotone operator: 〈Ax, x〉X ≥ 0 for all x ∈ X
and I + A : D(A) → X is onto (I is the identity),

Q ∈ L(X), and f ∈ L1([0, T ], X).

Later we will show that the three operators from (6) are well defined and satisfy our
general hypotheses in a precise mathematical setting.

In [10] we explored (8) with Q = 0. Existence and regularity results of this paper apply
correspondingly. Let us be more precise: equation (8) can be transformed equivalently in

u′(t) + (B−1A+Q)u(t) = B−1f(t), t ∈ ]0, T [, u(0) = u0,

where B−1A with D(B−1A) = D(A) generates a contraction semigroup on (X, 〈·, ·〉B) with
weighted inner product 〈·, ·〉B := 〈B·, ·〉X where the induced norm ‖·‖B is equivalent to the

1A rigorous mathematical formulation will be given in Section 4 below.



HIGHER ORDER DIFFERENTIABILITY FOR VISCOELASTICITY 5

original norm on X . Further, B−1A+Q is the infinitesimal generator of a C0-semigroup
{S(t)}t≥0 with

‖S(t)‖B ≤ exp(‖Q‖Bt),

see, e.g., Theorem 3.1.1 of [12]. Thus, (8) has a unique mild/weak solution in C([0, T ], X)
given by

u(t) = S(t)u0 +

∫ t

0

S(t− s)B−1f(s) ds.

On the basis of the above comments, both Theorems 2.4 and 2.6 of [10] carry over to (8)
when we replace f by B−1f and compensate the use of ‖ · ‖X by an additional constant
depending on ‖B‖, ‖B−1‖, ‖Q‖, and T . Thus, we have the continuous dependence of u
on the data:

(9) ‖u‖C([0,T ],X) . ‖u0‖X + ‖f‖L1([0,T ],X)
2

as well as the following regularity result which has been shown in [10, Theorem 2.6] for
Q = 0 under more general assumptions on f and u0.

Theorem 3.1. For some k ∈ N, let f ∈ W k,1(]0, T [, X) with f (ℓ)(0) = 0, ℓ = 0, . . . , k−1
(note that f (ℓ) is continuous). Let B ∈ D(F ) and let u be the unique mild solution of (8)
with u0 = 0. Then u ∈ Ck([0, T ], X) ∩ Ck−1([0, T ],D(A)) and

(10) ‖u‖Ck([0,T ],X) . ‖f‖W k,1(]0,T [,X)

where the constant depends on T , Q, ‖B‖, and ‖B−1‖.

3.1. Abstract parameter-to-solution map. We define the following parameter-to-
solution map related to (8):

(11) F : D(F ) ⊂ L
∗(X) → C([0, T ], X), B 7→ u,

where
D(F ) = {B ∈ L∗(X) : β−‖x‖

2
X ≤ 〈Bx, x〉X ≤ β+‖x‖

2
X}

for given 0 < β− < β+ < ∞.
Transferring the techniques of proof of [10, Theorem 3.6] straightforwardly to F yields

the following result.

Theorem 3.2. Let T > 0, f ∈ W 1,1
(
]0, T [, X

)
, and u0 ∈ D(A). Then, the mild solution

of (8) is a classical solution, i.e., u ∈ C1
(
[0, T ], X

)
∩ C
(
[0, T ],D(A)

)
, and F is Fréchet

differentiable at B ∈ int(D(F )) with F ′(B)H = u, H ∈ L∗(X), where u ∈ C
(
[0, T ], X

)
is

the mild solution of

(12) Bu′(t) + Au(t) +BQu(t) = −H(u′(t) +Qu(t)), t ∈ ]0, T [, u(0) = 0.

The representation of the adjoint of the Fréchet derivative carries over as well, see [10,
Theorem 3.8].

Theorem 3.3. Under the notation and assumptions of Theorem 3.2 we have

[
F ′(B)∗g

]
H =

∫ T

0

〈
H(u′(t) +Qu(t)), w(t)

〉
X
dt, g ∈ L2([0, T ], X), H ∈ L∗(X),

where w ∈ C([0, T ], X) is the mild solution of the adjoint evolution equation

(13) Bw′(t)− A∗w(t)−Q∗Bw(t) = g(t), t ∈ ]0, T [, w(T ) = 0.

2A . B indicates the existence of a generic constant c > 0 such that A ≤ cB.
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Remark 3.4. Setting w̃(t) = w(T − t) and g̃(t) = g(T − t) we rewrite (13) as initial
value problem

Bw̃′(t) + A∗w̃(t) +Q∗Bw̃(t) = −g̃(t), t ∈ ]0, T [, w̃(0) = 0,

which is of the same structure as our original equation (8) since A∗ is maximal monotone
as well. Further, in our concrete setting of the viscoelastic wave equation we have A∗ =
−A (see the next section) so that basically the same numerical solver can be used for the
state and the adjoint state equation.

This remark applies also to the situation of Theorem 4.8 below.

Next we investigate second order differentiability of F .

Theorem 3.5. Let f ∈ W 3,1(]0, T [, X), u0 = 0, and f(0) = f ′(0) = f ′′(0) = 0. Then,
F is twice Fréchet differentiable at B ∈ int(D(F )) with F ′′(B)[H1, H2] = u, Hi ∈ L∗(X),
i = 1, 2, where u ∈ C([0, T ], X) is the mild (in fact the classical) solution of

(14) Bu ′(t) + Au(t) +BQu(t) = −H1(u
′(t) +Qu(t)), u(0) = 0.

Here, u ∈ C2([0, T ], X)∩C1([0, T ],D(A)) is the classical solution of (12) with H replaced
by H2:

(15) Bu′(t) + Au(t) +BQu(t) = −H2(u
′(t) +Qu(t)), u(0) = 0.

Further, u ∈ C3([0, T ], X) ∩ C2([0, T ],D(A)) solves (8).

Proof. We need to show that

sup
H2∈L∗(X)

‖F ′(B +H1)H2 − F ′(B)H2 − F ′′(B)[H1, H2]‖C([0,T ],X)

‖H1‖L(X)‖H2‖L(X)

H1→0
−−−−→ 0.

Set ũ := F ′(B +H1)H2 which is well defined for H1 sufficiently small. We have

Bu ′ + (A+BQ)u = −H2(u
′ +Qu),

(B +H1)ũ
′ +
(
A+ (B +H1)Q

)
ũ = −H2(u

′ +Qu),

Bu ′ + (A+BQ)u = −H1(u
′ +Qu).

Then, ũ− u and v := ũ− u− u satisfy

(16) B(ũ− u)′ + (A+BQ)(ũ− u) = −H1(ũ
′ +Qũ)

and
Bv′ + (A+BQ)v = −H1

[
(ũ− u)′ +Q(ũ− u)

]
,

respectively, with homogeneous initial conditions. Using the continuous dependence of v
on the right hand side, see (9), we get

(17) ‖v‖C([0,T ],X) . ‖H1‖L(X) ‖ũ− u‖C1([0,T ],X).

Now we apply the regularity estimate (10) repeatedly for k = 1 to ũ− u in (16), then for
k = 2 to ũ and finally for k = 3 to u:

‖ũ− u‖C1([0,T ],X) . ‖H1‖L(X)‖ũ‖C2([0,T ],X) . ‖H1‖L(X)‖H2‖L(X)‖u‖C3([0,T ],X)

. ‖H1‖L(X)‖H2‖L(X)‖f‖W 3,∞(]0,T [,X).

Substituting the latter bound into (17) yields

1

‖H1‖L(X)

sup
H2∈L(X)

‖ũ− u− u‖C([0,T ],X)

‖H2‖L(X)

. ‖H1‖L(X)‖f‖W 3,∞(]0,T [,X)
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which finishes the proof. �

Remark 3.6. In seismic exploration, where (8) is the viscoacoustic or viscoelastic wave
equation, we can assume the environment to be at rest before firing the source. In other
words, the assumptions on u0 and f from the above theorem are justified.

The mindful reader might have noticed an unbalanced increase of the smoothness
assumptions on f and u0 from Theorem 3.2 (f ∈ W 1,1) to Theorem 3.5 (f ∈ W 3,1)
compared to the increase of smoothness of F : two additional differentiation orders for
f gain only one order for F . This is because in (17) we need convergence of ‖ũ −
u‖C1([0,T ],X) → 0 as H1 → 0 uniformly in H2. At least we get F ∈ C2,1, that is, F ′′ is
uniformly Lipschitz continuous.

Theorem 3.7. Under the assumptions of Theorem 3.5 we have that3

‖F ′′(B)− F ′′(B̃)‖L2(L∗(X),C([0,T ],X)) . ‖B − B̃‖L(X)

uniformly in int(D(F )). The constant in the above estimate only depends on β−, β+, T ,
Q, and f .

Proof. For Hi ∈ L∗(X), i = 1, 2, we estimate ‖u − v‖C([0,T ],X) where v = F ′′(B +
δB)[H1, H2], u = F ′′(B)[H1, H2]. From (14) we get

B(v ′ − u ′) + (A+BQ)(v − u) = −H1(v
′ − u ′ +Q(v − u))− δB(v ′ +Qv)

where u is the solution of (15) and v solves (15) with B replaced by B + δB and u by v,
the latter being the solution of (8) with B + δB instead of B and v(0) = 0. As before,
by the continuous dependence on the right hand side,

(18) ‖v − u‖C([0,T ],X) . ‖H1‖L(X)‖v − u‖C1([0,T ],X) + ‖δB‖L(X)‖v‖C1([0,T ],X)

where the involved constant only depends on β−, β+, T , and Q. All constants in this
proof, which are not explicitly given, only depend on these four quantities.

Further, by applying (10) again repeatedly for k = 1, k = 2, and k = 3, we obtain

(19) ‖v‖C1([0,T ],X) . ‖H1‖L(X)‖v‖C2([0,T ],X) . ‖H1‖L(X)‖H2‖L(X)‖v‖C3([0,T ],X)

. ‖H1‖L(X)‖H2‖L(X)‖f‖W 3,∞(]0,T [,X).

In view of (18) it remains to investigate ‖v−u‖C1([0,T ],X). We can use the same approach

as above: Set d = v − u and d = v − u. Then, d(0) = 0 and

Bd ′ + (A+BQ)d = −H2(d
′ +Qd)− δB(v ′ +Qv).

By (10) as well as the second and third estimate from (19),

‖d‖C1([0,T ],X) . ‖H2‖L(X)

(
‖d‖C2([0,T ],X) + ‖δB‖L(X)‖f‖W 3,∞(]0,T [,X)

)
.

We are left with estimating ‖d‖C2([0,T ],X). Note that

Bd′ + (A +BQ)d = −δB(v′ +Qv)

and (10) delivers

‖d‖C2([0,T ],X) . ‖δB‖L(X)‖v‖C3([0,T ],X) . ‖δB‖L(X)‖f‖W 3,∞(]0,T [,X).

So we found that

‖v − u‖C1([0,T ],X) . ‖H2‖L(X)‖δB‖L(X)‖f‖W 3,1(]0,T [,X).

3L2(V,W ) denotes the space of bounded bilinear mappings from V to W .
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Plugging this bound together with (19) into (18) results in

sup
H1,H2∈L∗(X)

‖v − u‖C([0,T ],X)

‖H1‖L(X)‖H2‖L(X)

. ‖f‖W 3,∞(]0,T [,X)‖δB‖L(X)

and we are done. �

3.2. Local ill-posedness. We recall briefly the concept of local ill-posedness from [9]:
Let Ψ: D(Ψ) ⊂ X → Y be a mapping between infinite dimensional normed spaces. Then,
the equation Ψ(·) = y is locally ill-posed at x+ ∈ D(Ψ) if in any neighborhood U of x+

there exists a sequence {ξk} ⊂ U ∩ D(Ψ) with limk→∞ ‖Ψ(ξk) − y‖Y = 0 but {ξk} does
not converge to x+ in X.

Here, we consider (11) as a mapping with the larger image space L2([0, T ], X). Theo-
rem 4.1 of [10] applies directly to (8) and (11). The proof only needs a slight and obvious
modification.

Theorem 3.8. Let u be the classical solution of (8) for u0 ∈ D(A) and f ∈ W 1,1(]0, T [, X).

Then the equation F (B) = u is locally ill-posed at any B̂ ∈ D(F ) satisfying F (B̂) = u
if for any r ∈ (0, 1] there exists r̂ ∈ (0, r) and a sequence of bounded, symmetric and

monotone operators Ek : X → X such that B̂ + Ek ∈ D(F ), r̂ ≤ ‖Ek‖L(X) ≤ r for all
k ∈ N, and limk→∞Ekv = 0 for all v ∈ X.

4. Application to the viscoelastic wave equation

We apply the abstract results to the viscoelastic wave equation in the formulation (5).
The underlying Hilbert space is

X = L2(D,R3)× L2(D,R3×3
sym)

1+L

with inner product

〈
(v,σ0, . . . ,σL), (w,ψ0, . . . ,ψL)

〉
X
=

∫

D

(
v ·w +

L∑

l=0

σl : ψl

)
dx

where the colon indicates the Frobenius inner product on R
3×3.

To define the domain D(A) of A (6) we split the boundary ∂D of the bounded Lipschitz
domain D into disjoint parts ∂D = ∂DD ∪̇ ∂DN . Let n be the outer normal vector on
∂DN . Then,

D(A) =
{
(w,ψ0, . . .ψL) ∈ H1

D ×H( div ) :

L∑

l=0

ψln = 0 on ∂DN

}

with H1
D = {v ∈ H1(D,R3) : v = 0 on ∂DD} and H( div ) =

{
σ ∈ L2

(
D,R3×3

sym

)1+L
:

div
(∑L

l=0 σl

)
∈ L2(D,R3),

}
.4

Lemma 4.1. The operator A as defined in (6) with D(A) ⊂ X from above is maximal
monotone.

Proof. Since

〈
A(v,σ0, . . . ,σL), (w,ψ0, . . . ,ψL)

〉
X
= −

∫

D

[
div
( L∑

l=0

σl

)
·w + ε(v) :

( L∑

l=0

ψl

)]
dx

4The traces
∑L

l=0 σln exist in a suitable space, see, e.g., [11].
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we can proceed exactly as in the proof of Lemma 6.1 from [10] to show skew-symmetry
of A. Hence, 〈Aw,w〉X = 0 for all w ∈ D(A).

Next we show that I+A is onto adapting arguments of [10]. We will be brief therefore.
For (f , g0, . . . , gL) ∈ X we need to find (v,σ0, . . . ,σL) ∈ D(A) satisfying

v − div
( L∑

l=0

σl

)
= f , σl − ε(v) = gl, l = 0, . . . , L.

Wemultiply the equation on the left by aw ∈ H1
D, integrate overD and use the divergence

theorem to get
∫

D

(
v ·w +

( L∑

l=0

σl

)
: ∇w

)
dx =

∫

D

f ·w dx.

Now we sum up the L+ 1 equations on the right, use the relation ε(v) : σ = ∇v : σ for
σ ∈ R

3×3
sym, and arrive at

∫

D

(
v ·w + (L+ 1)ε(v) : ε(w)

)
dx =

∫

D

(
f ·w −

L∑

l=0

gl : ∇w
)
dx for all w ∈ H1

D.

This is a standard variational problem (cf. displacement ansatz in elasticity) admitting a
unique solution v ∈ H1

D.
Set σl = gl + ε(v) and follow [10] to verify (v,σ0, . . . ,σL) ∈ D(A). �

Next we show that B ∈ L(X) from (6) is well defined with the required properties. As
in [10] we consider C of (3) as a mapping from D(C) =

{
(m, p) ∈ R

2 : m ≤ m ≤ m, p ≤

p ≤ p
}
into Aut(R3×3

sym)
5 with constants 0 < m < m and 0 < p < p such that 3p > 4m.6

For (m, p) ∈ D(C),

(20) C̃(m, p) := C(m, p)−1 = C

(
1

4m
,

p−m

m(3p− 4m)

)
.

Moreover, C(m, p)M : N = M : C(m, p)N and

min{2m, 3p− 4m}M : M ≤ C(m, p)M : M ≤ max{2m, 3p− 4m}M : M,

see, e.g., [16, Lemma 50]. Provided ρ(x) > 0,
(
µ0(x), π0(x)

)
,
(
τS(x)µ0(x), τP(x)π0(x)

)
∈

D(C) for almost all x ∈ D we conclude that

(21) B




w

ψ0

ψ1

...

ψL



=




ρw

C̃
(
µ0, π0

)
ψ0

1
L
C̃
(
τSµ0, τPπ0

)
ψ1

...
1
L
C̃
(
τSµ0, τPπ0

)
ψL




yielding a uniformly positive B ∈ L∗(X) in the sense of our general hypotheses from the
beginning of Section 3. Hence, the general hypotheses are satisfied for the viscoelastic
wave equation.

5This is the space of linear maps from R
3×3
sym into itself (space of automorphisms).

6Note that in [10] and [16] different C’s are used.
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4.1. Full waveform forward operator. In FWI the five parameters (ρ, vS, τS, vP, τP)
are of interest. Therefore we will define a parameter-to-solution map Φ which takes these
parameters as arguments. A physically meaningful domain of definition for Φ is

D(Φ) =
{
(ρ, vS, τS, vP, τP) ∈ L∞(D)5 : ρmin ≤ ρ(·) ≤ ρmax, vP,min ≤ vP(·) ≤ vP,max,

vS,min ≤ vS(·) ≤ vS,max, τP,min ≤ τP(·) ≤ τP,max, τS,min ≤ τS(·) ≤ τS,max a.e. in D
}

with suitable positive bounds 0 < ρmin < ρmax < ∞, etc.
In view of (4) we set

µmin :=
ρmin v

2
S,min

1 + τS,maxα
and µmax :=

ρmax v
2
S,max

1 + τS,minα

which are induced lower and upper bounds for µ0. We set the bounds πmin and πmax

for π0 accordingly by replacing S by P. Next we define p, p, m, and m such that
(µ0, π0), (τSµ0, τPπ0) as functions of (ρ, vP, vS, τP, τS) ∈ D(Φ) are in D(C). Indeed,

p := πmin min{1, τP,min} and p := πmax max{1, τP,max}

with m and m set correspondingly will do the job. The restriction 3p > 4m translates
into

4

3

ρmax

ρmin

1 + τP,maxα

1 + τS,minα

max{1, τS,max}

min{1, τP,min}
<

v2P,min

v2S,max

which reflects in a way the physical fact that pressure waves propagate considerably faster
than shear waves.

For f ∈ W 1,1(]0, T [, L2(D,R3)) and u0 = (v(0),σ0(0), . . . ,σL(0)) ∈ D(A) the full
waveform forward operator

Φ: D(Φ) ⊂ L∞(D)5 → L2([0, T ], X), (ρ, vS, τS, vP, τP) 7→ (v,σ0, . . . ,σL),

is well defined where (v,σ0, . . . ,σL) is the unique classical solution of (5) with initial
value u0.

To benefit from our abstract results we factorize Φ = F ◦ V where F is as in (11) and

V : D(Φ) ⊂ L∞(D)5 → L∗(X), (ρ, vS, τS, vP, τP) 7→ B,

where B is defined in (21) via (7).

Remark 4.2. Note that the image of V is in D(F ) by an appropriate choice of β− and
β+ in terms of ρmin, ρmax, p, p, m, and m.

The inverse problem of FWI in the viscoelastic regime is locally ill-posed. This can be
proved using Theorem 3.8, compare the proof of Theorem 6.7 of [10]. We give a direct
proof though.

Theorem 4.3. The inverse problem Φ(·) = (v,σ0, . . . ,σL) is locally ill-posed at any
interior point of p = (ρ, vS, τS, vP, τP) ∈ D(Φ).

Proof. Fix a point ξ ∈ D and define balls Kn = {y ∈ R
3 : |y − ξ| ≤ δ/n} with a δ > 0 so

small that Kn ⊂ D for all n ∈ N. Let χn be the indicator function of Kn. Further, for any
r > 0 such that pn := p+ r(χn, χn, χn, χn, χn) ∈ D(Φ) we have that ‖pn −p‖L∞(D)5 = r,
that is, pn does not converge to p. However, limn→∞ ‖Φ(pn)−Φ(p)‖L2([0,T ],X) = 0 as we
demonstrate now.

Let un = Φ(pn) and u = Φ(p). Then, dn = un − u satisfies

V (pn)d
′
n + Adn + V (pn)Qdn =

(
V (p)− V (pn)

)
(u′ +Qu), dn(0) = 0.
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By the continuous dependence of dn on the data, see (9), we obtain

‖dn‖L2([0,T ],X) .
∥∥(V (p)− V (pn)

)
(u′ +Qu)

∥∥
L1([0,T ],X)

where the constant is independent of n, see Remark 4.2. Next one shows limn→∞ ‖
(
V (p)−

V (pn)
)
v‖X = 0 for any v ∈ X using pn → p pointwise a.e. in D as n → ∞ and the

dominated convergence theorem. Since ‖V (pn)‖X . 1 for all n ∈ N a further application
of the dominated convergence theorem with respect to the time domain yields

∫ T

0

∥∥(V (p)− V (pn)
)(
u′(t) +Qu(t)

)∥∥
X
dt

n→∞
−−−→ 0

and finishes the proof. �

4.2. First order differentiability. To derive the first order Fréchet derivative of Φ we

provide the Fréchet derivative of V . Its formulation needs the derivative of C̃ which we
take from [10, Lemma 6.3]:

(22) C̃ ′(m, p)

[
m̂
p̂

]
= −C̃(m, p) ◦ C(m̂, p̂) ◦ C̃(m, p)

for (m, p) ∈ int(D(C)) and (m̂, p̂) ∈ R
2.

Let p = (ρ, vS, τS, vP, τP) ∈ int(D(Φ)) and p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5. Then,
V ′(p)p̂ ∈ L∗(X) is given by

(23) V ′(p)p̂




w

ψ0

...

ψL




=




ρ̂w

− ρ̂

ρ2
C̃(µ, π)ψ0 +

1
ρ
C̃ ′(µ, π)

[
µ̃

π̃

]
ψ0

− ρ̂

Lρ2
C̃(τSµ, τPπ)ψ1 +

1
Lρ
C̃ ′(τSµ, τPπ)

[
µ̂

π̂

]
ψ1

...

− ρ̂

Lρ2
C̃(τSµ, τPπ)ψL + 1

Lρ
C̃ ′(τSµ, τPπ)

[
µ̂

π̂

]
ψL




where µ = µ0/ρ, π = π0/ρ, see (7), and

µ̃ =
2vS

1 + τSα
v̂S −

α v2S
(1 + τSα)2

τ̂S, π̃ =
2vP

1 + τPα
v̂P −

α v2P
(1 + τPα)2

τ̂P,(24)

µ̂ =
2τS vS
1 + τSα

v̂S +
v2S

(1 + τSα)2
τ̂S, π̂ =

2τP vP
1 + τPα

v̂P +
v2P

(1 + τPα)2
τ̂P.(25)

Theorem 4.4. Under the assumptions made in this section the full waveform forward
operator Φ is Fréchet differentiable at any interior point p = (ρ, vS, τS, vP, τP) of D(Φ):
For p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5 we have Φ′(p)p̂ = u where u = (v,σ0, . . . ,σL) ∈
C([0, T ], X) with u(0) = 0 is the mild solution of

ρ ∂tv = div
( L∑

l=0

σl

)
− ρ̂ ∂tv,(26a)

∂tσ0 = C(µ0, π0)ε(v) +
(
ρ̂ C(µ, π) + ρC(µ̃, π̃)

)
ε(v),(26b)

∂tσl = LC(τSµ0, τPπ0)ε(v)(26c)
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−
1

τσ,L

σl +
(
ρ̂ LC(τSµ, τPπ) + ρC(µ̂, π̂)

)
ε(v), l = 1, . . . , L,

where (v,σ0, . . . ,σL) is the classical solution of (5).

Proof. We apply Theorem 3.2 to Φ′(p)p̂ = F ′(V (p))V ′(p)p̂ and get the system




ρ ∂tv
1
ρ
C̃(µ, π)∂tσ0

1
Lρ

C̃(τSµ, τPπ)∂tσ1

...
1
Lρ

C̃(τSµ, τPπ)∂tσL




=




div
(∑L

l=0 σl

)

ε(v)
...

ε(v)




−




0

0

1
Lρ τσ,1

C̃
(
τSµ, τPπ

)
σ1

...
1

Lρ τσ,L
C̃
(
τSµ, τPπ

)
σL




− V ′(p)p̂







∂tv

∂tσ0

∂tσ1

...

∂tσL




+




0

0
1

τσ,1
σ1

...
1

τσ,L
σL







which is equivalent to (26) in view of (5b), (5c), (22), and (23). �

Theorem 4.5. The assumptions are as in Theorem 4.4. Then, the adjoint Φ′(p)∗ ∈
L
(
L2([0, T ], X), (L∞(D)5)′

)
at p = (ρ, vS, τS, vP, τP) ∈ D(Φ) is given by

Φ′(p)∗g =




∫ T

0

(
∂tv ·w− 1

ρ
ε(v) : (ϕ0 +Σ)

)
dt

2
vS

∫ T

0

(
− ε(v) : (ϕ0 +Σ) + π tr(Σv) divv

)
dt

1
1+ατS

∫ T

0

(
ε(v) : Στ

S,2 + π tr(Στ
S,1) divv

)
dt

− 2π
vP

∫ T

0
tr(Σv) div v dt

π
1+ατP

∫ T

0
tr(Στ

P
) divv dt




∈ L1(D)5

for g = (g−1, g0, . . . , gL) ∈ L2
(
[0, T ], L2(D,R3) × L2(D,R3×3

sym)
1+L
)
where v is the first

component of the solution of (5), Σ =
∑L

l=1ϕl, and

Σv =
1

3π − 4µ
ϕ0 +

τP
3τPπ − 4τSµ

Σ,

Στ
S,1 = −

α

3π − 4µ
ϕ0 +

τP
τS(3τPπ − 4τSµ)

Σ, Στ
S,2 = αϕ0 −

1

τS
Σ,

Στ
P
=

α

3π − 4µ
ϕ0 −

1

3τPπ − 4τSµ
Σ,

and w = (w,ϕ0, . . . ,ϕL) ∈ C([0, T ], X) uniquely solves

∂tw =
1

ρ
div
( L∑

l=0

ϕl

)
+

1

ρ
g−1,(27a)

∂tϕ0 = C
(
µ0, π0

)(
ε(w) + g0

)
,(27b)
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∂tϕl = LC
(
τSµ0, τPπ0

)(
ε(w) + gl

)
+

1

τσ,l

ϕl, l = 1, . . . , L,(27c)

with w(T ) = 0.

Remark 4.6. Please note that Φ′(p)∗ actually maps into L1(D)5 which is a subspace of
(L∞(D)5)′. This remark applies also to the adjoints considered in Theorems 4.9 and 4.10
below.

Proof of Theorem 4.5. Using A∗ = −A (skew-symmetry), Q∗ = Q, and QB = BQ we
convince ourselves that (27) is the concrete version of the abstract equation (13). Further,
by Theorem 3.3,

〈
Φ′(p)∗g, p̂

〉
(L∞(D)5)′×L∞(D)5

=
〈
F ′(V (p))∗g, V ′(p)p̂

〉
L(X)′×L(X)

=

∫ T

0

〈
V ′(p)p̂

(
u′(t) +Qu(t)

)
, w(t)〉X dt(28)

where u = (v,σ0, . . . ,σL) is the classical solution of (5). We are now going to evaluate
the above integrand suppressing its t-dependence. Using (23) and (22) we find for p̂ =
(ρ̂, v̂S, τ̂S, v̂P, τ̂P) that

(29)
〈
V ′(p)p̂

(
u′ +Qu

)
, w〉X =

∫

D

(
ρ̂ ∂tv ·w + S0 + S1 + · · ·+ SL

)
dx

with

S0 =
[
−

ρ̂

ρ2
C̃(µ, π)∂tσ0 −

1

ρ
C̃(µ, π)C(µ̃, π̃)C̃(µ, π)∂tσ0

]
: ϕ0

and, for l = 1, . . . , L,

Sl =
[
−

ρ̂

Lρ2
C̃(τSµ, τPπ)

(
∂tσl +

σl

τσ,l

)

−
1

Lρ
C̃(τSµ, τPπ)C(µ̂, π̂)C̃(τSµ, τPπ)

(
∂tσl +

σl

τσ,l

)]
: ϕl.

In view of (5b) we may write

S0 =
[
−

ρ̂

ρ
ε(v)− C̃(µ, π)C(µ̃, π̃)ε(v)

]
: ϕ0 = −

ρ̂

ρ
ε(v) : ϕ0 − C(µ̃, π̃)ε(v) : C̃(µ, π)ϕ0

and, similarly by (5c) ,

Sl = −
ρ̂

ρ
ε(v) : ϕl − C(µ̂, π̂)ε(v) : C̃(τSµ, τPπ)ϕl, l = 1, . . . , L.

Next, using (20), we compute

C(µ̃, π̃)ε(v) : C̃(µ, π)ϕ0

=
(
2µ̃ ε(v) + (π̃ − 2µ̃) divv I

)
:
( 1

2µ
ϕ0 +

2µ− π

2µ(3π − 4µ)
tr(ϕ0)I

)
(30)

= µ̃
( 1
µ
ε(v) : ϕ0 −

π

µ(3π − 4µ)
div v tr(ϕ0)

)
+

π̃

3π − 4µ
div v tr(ϕ0)

yielding

S0 = −
ρ̂

ρ
ε(v) : ϕ0
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+ µ̃
(
−

1

µ
ε(v) : ϕ0 +

π

µ(3π − 4µ)
divv tr(ϕ0)

)
−

π̃

3π − 4µ
div v tr(ϕ0).

Analogously,

Sl = −
ρ̂

ρ
ε(v) : ϕl

+ µ̂
(
−

1

τSµ
ε(v) : ϕl +

τPπ

τSµ(3τPπ − 4τSµ)
div v tr(ϕl)

)
−

π̂

3τPπ − 4τSµ
divv tr(ϕl).

Next we group the terms in the sum (29) belonging to the five components of p̂. To this
end we replace µ̃, π̃, µ̂, and π̂ by their respective expressions from (24) and (25) which
we slightly rewrite introducing µ and π:

µ̃ =
2µ

vS
v̂S −

αµ

1 + τSα
τ̂S, π̃ =

2π

vP
v̂P −

α π

1 + τPα
τ̂P,(31)

µ̂ =
2τS µ

vS
v̂S +

µ

1 + τSα
τ̂S, π̂ =

2τP π

vP
v̂P +

π

1 + τPα
τ̂P.(32)

After some algebra we get

〈
V ′(p)p̂

(
u′ +Qu

)
, u〉X =

∫

D

[
ρ̂
(
∂tv ·w−

1

ρ
ε(v) : (ϕ0 +Σ)

)

+ v̂S
2

vS

(
− ε(v) : (ϕ0 +Σ) + π tr(Σv) div v

)

+
τ̂S

1 + ατS

(
ε(v) : Στ

S,2 + π tr(Στ
S,1) divv

)

− v̂P
2π

vP
tr(Σv) divv + τ̂P

π

1 + ατP
tr(Στ

P) divv
]
dx

which ends the proof. �

4.3. Second order differentiability. The second derivative of Φ is given by

(33) Φ′′(p)[p̂1, p̂2] = F ′′(V (p))[V ′(p)p̂1, V
′(p)p̂2] + F ′(V (p))V ′′(p)[p̂1, p̂2]

using the chain and product rules, see, e.g., [15, Section 4.3]. In a first step we need to
find V ′′. Differentiating (23) at p = (ρ, vS, τS, vP, τP) ∈ int(D(Φ)) we obtain

(34) V ′′(p)[p̂1, p̂2]




w

ψ0

...

ψL




=
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0
(

ρ̂1ρ̂2
ρ3

C̃(µ, π)− ρ̂1
ρ2
C̃ ′(µ, π)

[
µ̃2

π̃2

]
− ρ̂2

ρ2
C̃ ′(µ, π)

[
µ̃1

π̃1

]
+ 1

ρ
C̃ ′′(µ, π)

[
µ̃1

π̃1

] [
µ̃2

π̃2

])
ψ0

(
ρ̂1ρ̂2
Lρ3

C̃(τSµ, τPπ)−
ρ̂1
Lρ2

C̃ ′(τSµ, τPπ)

[
µ̂2

π̂2

]
− ρ̂2

Lρ2
C̃ ′(τSµ, τPπ)

[
µ̂1

π̂1

]

+ 1
Lρ
C̃ ′′(τSµ, τPπ)

[
µ̂1

π̂1

] [
µ̂2

π̂2

])
ψ1

...
(

ρ̂1ρ̂2
Lρ3

C̃(τSµ, τPπ)−
ρ̂1
Lρ2

C̃ ′(τSµ, τPπ)

[
µ̂2

π̂2

]
− ρ̂2

Lρ2
C̃ ′(τSµ, τPπ)

[
µ̂1

π̂1

]

+ 1
Lρ
C̃ ′′(τSµ, τPπ)

[
µ̂1

π̂1

] [
µ̂2

π̂2

] )
ψL




for p̂i = (ρ̂i, v̂S,i, τ̂S,i, v̂P,i, τ̂P,i) ∈ L∞(D)5, i = 1, 2. Further, µ̃i, π̃i, and µ̂i, π̂i are defined
as in (24) and (25), respectively, plugging in the respective components of p̂i. We close
the expression for V ′′ by

(35) C̃ ′′(m, p)

[
m̂1

p̂1

] [
m̂2

p̂2

]
= C̃(m, p) ◦ C(m̂1, p̂1) ◦ C̃(m, p) ◦ C(m̂2, p̂2) ◦ C̃(m, p)

+ C̃(m, p) ◦ C(m̂2, p̂2) ◦ C̃(m, p) ◦ C(m̂1, p̂1) ◦ C̃(m, p).

The proof of (35) requires straightforward but lengthy calculations.

Theorem 4.7. Let f be in W 3,1(]0, T [, L2(D,R3)) with f(0) = f ′(0) = f ′′(0) = 0. Further,
let u0 = 0 and adopt the assumptions and notation made in this section.

Then, the full waveform forward operator Φ is twice Fréchet differentiable at any in-
terior point p = (ρ, vS, τS, vP, τP) of D(Φ): For p̂i = (ρ̂i, v̂S,i, τ̂S.i, v̂P,i, τ̂P,i) ∈ L∞(D)5,
i = 1, 2, we have Φ′′(p)[p̂1, p̂2] = v+u where v = (w,ψ0, . . . ,ψL) and u = (v,σ0, . . . ,σL)
are both in C([0, T ], X). They are uniquely determined as mild solutions of the following
viscoelastic equations.

The equations for u are u(0) = 0 and

ρ ∂tv = div
( L∑

l=0

σl

)
− ρ̂1 ∂tv,

∂tσ0 = C(µ0, π0)ε(v) +
(
ρ̂1C(µ, π) + ρC(µ̃1, π̃1)

)
ε(v),

∂tσl = LC(τSµ0, τPπ0)ε(v)

−
1

τσ,L

σl +
(
ρ̂1 LC(τSµ, τPπ) + ρC(µ̂1, π̂1)

)
ε(v), l = 1, . . . , L,

with v being the first component of the solution of (26) where the parameters p̂ have to
be replaced by p̂2.

The equations for v are v(0) = 0 and

ρ ∂tw = div
( L∑

l=0

ψl

)
,
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∂tψ0 = C(µ0, π0)ε(w)−
( ρ̂1ρ̂2

ρ2
C(µ, π) + ρ̂1C(µ̃1, π̃1) + ρ̂2C(µ̃2, π̃2)

+ ρC(µ̃1, π̃1)C̃(µ, π)C(µ̃2, π̃2) + ρC(µ̃2, π̃2)C̃(µ, π)C(µ̃1, π̃1)
)
ε(v),

∂tψl = LC(τSµ0, τPπ0)ε(w)−
1

τσ,l

ψl − L
( ρ̂1ρ̂2

ρ2
C(τSµ, τPπ) + ρ̂1C(µ̂1, π̂1) + ρ̂2C(µ̂2, π̂2)

+ ρC(µ̂1, π̂1)C̃(τSµ, τPπ)C(µ̂2, π̂2) + ρC(µ̂2, π̂2)C̃(τSµ, τPπ)C(µ̂1, π̂1)
)
ε(v),

l = 1, . . . , L, where v is the first component of the solution of (5).

Proof. By (33), Φ′′(p)[p̂1, p̂2] = v + u where

v := F ′(V (p))V ′′(p)[p̂1, p̂2] and u := F ′′(V (p))[V ′(p)p̂1, V
′(p)p̂2].

We apply Theorems 3.2 and 3.5 to specify the equations for v and u, respectively.
We start with u which is determined by two coupled equations of type (26). These

equations only differ in the plugged in parameters and right hand sides.
Theorem 3.2 yields the following system for v:



ρ ∂tw
1
ρ
C̃(µ, π)∂tψ0

1
Lρ

C̃(τSµ, τPπ)∂tψ1

...
1
Lρ

C̃(τSµ, τPπ)∂tψL




=




div
(∑L

l=0ψl

)

ε(w)
...

ε(w)




−




0

0

1
Lρ τσ,1

C̃
(
τSµ, τPπ

)
ψ1

...
1

Lρ τσ,L
C̃
(
τSµ, τPπ

)
ψL




− V ′′(p)[p̂1, p̂2]







∂tv

∂tσ0

∂tσ1

...

∂tσL




+




0

0
1

τσ,1
σ1

...
1

τσ,L
σL






.

Applying (5b), (5c), (22), (34), and (35) leads to the equations for v. �

4.4. An additional adjoint. As explained in the introduction, second-degree Newton
solvers might resolve the cross-talk effect. In our group we plan to implement a variant
of the second-degree Newton method (1) for viscolesatic FWI. There one needs to solve
a linear system containing the operator Φ′′(p)[p̂, ·], see (1b). Our regularization method
of choice is the conjugate gradient iteration which needs the adjoint operator. In this
subsection we derive an explicit expression for it.

Recall from (33) that

(36) Φ′′(p)[p̂, ·] = F ′′(V (p))[V ′(p)p̂, V ′(p) ·] + F ′(V (p))V ′′(p)[p̂, ·].

In a first step we therefore consider F ′′(B)[H, ·] : L∗(X) → L2([0, T ], X) for B ∈ D(F )
and H ∈ L∗(X).

Theorem 4.8. Under the assumptions of Theorem 3.5 we have

[
F ′′(B)[H1, ·]

∗g
]
H2 =

∫ T

0

〈
H1(u

′(t) +Qu(t)), w(t)
〉
X
dt
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for g ∈ L2([0, T ], X), Hi ∈ L∗(X), i = 1, 2, where u = F ′(B)H2 is the solution of (15).
Further, w ∈ C([0, T ], X) is the mild solution of the adjoint evolution equation

Bw′(t)− A∗w(t)−Q∗Bw(t) = g(t), t ∈ ]0, T [, w(T ) = 0.

Proof. Since
[
F ′′(B)[H1, ·]

∗g
]
H2 = 〈u, g〉L2([0,T ],X) where u ∈ C1([0, T ], X) solves (14) we

argue similar to the proof of Theorem 3.8 in [10]: Assume g ∈ W 1,1(]0, T [, X). Then,
w ∈ C1([0, T ], X). Using the selfadjointness of B and integration by parts we compute

〈u, g〉L2([0,T ],X) =

∫ T

0

〈u(t), g(t)〉Xdt =

∫ T

0

〈u(t), Bw′(t)−A∗w(t)−Q∗Bw(t)〉Xdt

= −

∫ T

0

〈Bu ′(t) + Au(t) +BQu(t), w(t)〉Xdt

=

∫ T

0

〈H1(u
′(t) +Qu(t)), w(t)〉Xdt.

The assertion follows since W 1,1(]0, T [, X) is dense in L2(]0, T [, X). �

Theorem 4.9. Under the assumptions of Theorem 4.7 we have that the adjoint

F ′′(V (p))[V ′(p)p̂, V ′(p) ·]∗ ∈ L
(
L2([0, T ], X), (L∞(D)5)′

)

at p = (ρ, vS, τS, vP, τP) ∈ D(Φ) and p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5 is given by

F ′′(V (p))[V ′(p)p̂, V ′(p)·]∗g =




∫ T

0

(
∂tv ·w − 1

ρ
ε(v) : (ϕ0 +Σ)

)
dt

2
vS

∫ T

0

(
− ε(v) : (ϕ0 +Σ) + π tr(Σv) divv

)
dt

1
1+ατS

∫ T

0

(
ε(v) : Στ

S,2 + π tr(Στ
S,1) div v

)
dt

− 2π
vP

∫ T

0
tr(Σv) divv dt

π
1+ατP

∫ T

0
tr(Στ

P
) divv dt




∈L1(D)5

for g = (g−1, g0, . . . , gL) ∈ L2
(
[0, T ], L2(D,R3) × L2(D,R3×3

sym)
1+L
)
where v is the first

component of the solution of (26), w = (w,ϕ0, . . . ,ϕL) solves (27) with w(T ) = 0, and

Σ =
∑L

l=1ϕl. The quantities Σ
v, Στ

S,1, Σ
τ
S,2, and Στ

P
are exactly those from Theorem 4.5.

Proof. The second order Fréchet derivative is symmetric, see, e.g, [4, (8.12.2)], that is,
(
F ′′(V (p))[V ′(p)p̂1, V

′(p) ·]∗g
)
p̂2 =

(
F ′′(V (p))[V ′(p)p̂2, ·]

∗g
)
V ′(p)p̂1

=

∫ T

0

〈V ′(p)p̂2(u
′(t) +Qu(t)), w(t)

〉
X
dt

where we applied the previous theorem to obtain the second equality. Note that here
u = F ′(V (p))V ′(p)p̂1 solves (26) with p̂ = p̂1 and w solves (27). We are now exactly in
the situation of the proof of Theorem 4.5, see (28), and proceed accordingly. �

Theorem 4.10. Under the assumptions of Theorem 4.7 we have that the adjoint

F ′(V (p))V ′′(p)[p̂, ·]∗ ∈ L
(
L2([0, T ], X), (L∞(D)5)′

)
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at p = (ρ, vS, τS, vP, τP) ∈ D(Φ) and p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5 is given by

F ′(V (p))V ′′(p)[p̂, ·]∗g =




1
ρ

∫ T

0

(
ε(v) : Υρ

1 + tr(Υρ
2) divv

)
dt

2
vS

∫ T

0

(
ε(v) : Υv

S,1 + tr(Υv
S,2) divv

)
dt

1
1+ατS

∫ T

0

(
ε(v) : Υτ

S,1 + tr(Υτ
S,2) divv

)
dt

2π
vP

∫ T

0
tr(Υv

P
) div v dt

π
1+ατP

∫ T

0
tr(Υτ

P
) divv dt




∈ L1(D)5

for g = (g−1, g0, . . . , gL) ∈ L2
(
[0, T ], L2(D,R3) × L2(D,R3×3

sym)
1+L
)
where v is the first

component of the solution of (5). Let w = (w,ϕ0, . . . ,ϕL) solve (27) with w(T ) = 0 and

set Σ =
∑L

l=1ϕl. Then,

Υ
ρ
1 =

( ρ̂
ρ
+

µ̃

µ

)
ϕ0 +

( ρ̂
ρ
+

µ̂

τSµ

)
Σ, Υ

ρ
2 =

µπ̃ − π

µ(3π − 4µ)
ϕ0 +

τSµπ̂ − τPπ

τSµ(3τPπ − 4τSµ)
Σ,

Υv
S,1 =

( ρ̂
ρ
+

2µ̃

µ

)
ϕ0 +

( ρ̂
ρ
+

2µ̂

τSµ

)
Σ,

Υv
S,2 =

(
2
3µ̃π2 − 4π̃µ2

µ(3π − 4µ)2
−

ρ̂

ρ

π

3π − 4µ

)
ϕ0

+
(
2

3µ̂τ 2
P
π2 − 4π̂τ 2

S
µ2

τSµ(3τPπ − 4τSµ)2
−

ρ̂

ρ

τPπ

3τPπ − 4τSµ

)
Σ,

Υτ
S,1 = −α

( ρ̂
ρ
+

2µ̃

µ

)
ϕ0 +

( ρ̂

τSρ
+

2µ̂

τ 2
S
µ

)
Σ,

Υτ
S,2 = −α

(
2
3µ̃π2 − 4π̃µ2

µ(3π − 4µ)2
−

ρ̂

ρ

π

3π − 4µ

)
ϕ0

+
(
2

3µ̂τ 2
P
π2 − 4π̂τ 2

S
µ2

τ 2
S
µ(3τPπ − 4τSµ)2

−
ρ̂

ρ

τPπ

τS(3τPπ − 4τSµ)

)
Σ,

Υv
P
=
( ρ̂
ρ

1

3π − 4µ
+ 2

3π̃π2 − 4µ̃µ2

µ2(3π − 4µ)2

)
ϕ0

+ τP

( ρ̂
ρ

1

3τPπ − 4τSµ
+ 2

3π̂τ 2
P
π2 − 4µ̂τ 2

S
µ2

τ 2
S
µ2(3τPπ − 4τSµ)2

)
Σ,

Υτ
P
= −α

( ρ̂
ρ

1

3π − 4µ
+ 2

3π̃π2 − 4µ̃µ2

µ2(3π − 4µ)2

)
ϕ0

+
( ρ̂
ρ

1

3τPπ − 4τSµ
+ 2

3π̂τ 2
P
π2 − 4µ̂τ 2

S
µ2

τ 2
S
µ2(3τPπ − 4τSµ)2

)
Σ,

with the abbreviations µ̃, π̃, and µ̂, π̂ from (31) and (32) which depend on p̂.

Proof. Since

(
F ′(V (p))V ′′(p)[p̂1, ·]

∗g
)
p̂2

(28)
=

∫ T

0

〈
V ′′(p)[p̂1, p̂2]

(
u′(t) +Qu(t)

)
, w(t)〉X dt.
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we are basically again in the situation of the proof of Theorem 4.5. Using (34) we find
that

〈
V ′′(p)[p̂1, p̂2]

(
u′ +Qu

)
, w〉X =

∫

D

(
S0 + S1 + · · ·+ SL

)
dx

with

S0 =

(
ρ̂1ρ̂2
ρ3

C̃(µ, π)−
ρ̂1
ρ2

C̃ ′(µ, π)

[
µ̃2

π̃2

]
−

ρ̂2
ρ2
C̃ ′(µ, π)

[
µ̃1

π̃1

]

+
1

ρ
C̃ ′′(µ, π)

[
µ̃1

π̃1

] [
µ̃2

π̃2

])
∂tσ0 : ϕ0

and

Sl =

(
ρ̂1ρ̂2
Lρ3

C̃(τSµ, τPπ)−
ρ̂1
Lρ2

C̃ ′(τSµ, τPπ)

[
µ̂2

π̂2

]
−

ρ̂2
Lρ2

C̃ ′(τSµ, τPπ)

[
µ̂1

π̂1

]

+
1

Lρ
C̃ ′′(τSµ, τPπ)

[
µ̂1

π̂1

] [
µ̂2

π̂2

])(
∂tσl +

σl

τσ,l

)
: ψl, l = 1, . . . , L.

First we simplify S0. By (5b),

1

ρ
C̃(µ, π)∂tσ0 : ϕ0 = ε(v) : ϕ0.

Further, in view of (30),

−
1

ρ
C̃ ′(µ, π)

[
µ̃i

π̃i

]
∂tσ0 : ϕ0

= µ̃i

( 1
µ
ε(v) : ϕ0 −

π

µ(3π − 4µ)
div v tr(ϕ0)

)
+

π̃i

3π − 4µ
div v tr(ϕ0), i = 1, 2.

Next, using (5b) and (35) we get

1

ρ
C̃ ′′(µ, π)

[
µ̃1

π̃1

] [
µ̃2

π̃2

]
∂tσ0 : ϕ0 = C̃(µ, π)C(µ̃1, π̃1)ε(v) : C(µ̃2, π̃2)C̃(µ, π)ϕ0

+ C̃(µ, π)C(µ̃2, π̃2)ε(v) : C(µ̃1, π̃1)C̃(µ, π)ϕ0.

We have

C̃(µ, π)C(µ̃2, π̃2)ε(v) =
µ̃2

µ
ε(v) +

µπ̃2 − µ̃2π

µ(3π − 4µ)
div v I

and

C(µ̃1, π̃1)C̃(µ, π)ϕ0 =
µ̃1

µ
ϕ0 +

µπ̃1 − µ̃1π

µ(3π − 4µ)
tr(ϕ0) I

so that

1

ρ
C̃ ′′(µ, π)

[
µ̃1

π̃1

] [
µ̃2

π̃2

]
∂tσ0 : ϕ0 = 2

µ̃1µ̃2

µ2
ε(v) : ϕ0

+ 2
µ̃2(3µ̃1π

2 − 4π̃1µ
2) + π̃2(3π̃1π

2 − 4µ̃1µ
2)

µ2(3π − 4µ)2
div v tr(ϕ0).
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Substituting above auxiliary results into the expression for S0 yields

S0 = ρ̂2

(( ρ̂1
ρ2

+
µ̃1

ρµ

)
ε(v) : ϕ0 +

1

ρ

( π̃1

3π − 4µ
−

π

µ(3π − 4µ)

)
div v tr(ϕ0)

)

+ µ̃2

(( ρ̂1
ρµ

+
2µ̃1

µ2

)
ε(v) : ϕ0 +

(
2
3µ̃1π

2 − 4π̃1µ
2

µ2(3π − 4µ)2
−

ρ̂1
ρ

π

µ(3π − 4µ)

)
divv tr(ϕ0)

)

+ π̃2

( ρ̂1
ρ

1

µ(3π − 4µ)
+ 2

3π̃1π
2 − 4µ̃1µ

2

µ2(3π − 4µ)2

)
div v tr(ϕ0).

Similar computations for l = 1, . . . , L based on (5c) result in

Sl = ρ̂2

(( ρ̂1
ρ2

+
µ̂1

ρτSµ

)
ε(v) : ϕl +

1

ρ

( π̂1

3τPπ − 4τSµ
−

τPπ

τSµ(3τPπ − 4τSµ)

)
divv tr(ϕl)

)

+ µ̂2

(( ρ̂1
ρτSµ

+
2µ̂1

τ 2Sµ
2

)
ε(v) : ϕl

+
(
2
3µ̂1τ

2
Pπ

2 − 4π̂1τ
2
Sµ

2

τ 2Sµ
2(3τPπ − 4τSµ)2

−
ρ̂1
ρ

τPπ

τSµ(3τPπ − 4τSµ)

)
divv tr(ϕl)

)

+ π̂2

( ρ̂1
ρ

1

τSµ(3τPπ − 4τSµ)
+ 2

3π̂1τ
2
Pπ

2 − 4µ̂1τ
2
Sµ

2

τ 2Sµ
2(3τPπ − 4τSµ)2

)
div v tr(ϕl).

Next we replace µ̃2, π̃2, and µ̂2, π̂2 by their values from (31) and (32), respectively. Finally,
we calculate S0 + · · ·+ SL and group the terms belonging to the components of p̂2. �

In view of (36) we have now derived an analytic expression for Φ′′(p)[p̂, ·]∗ in rather
basic terms.

Appendix A. Two spatial dimensions

The expressions for the Fréchet derivatives and their adjoints provided in the main part
of this paper cannot directly be applied to the viscoelastic wave equation in two spatial
dimensions. The differences to the 3D case which have to be taken into account are

tr(I) = 2 and C̃(m, p)M = C−1(m, p)M =
1

2m
M+

2m− p

4m(p−m)
tr(M)I.

With these ingredients the derivatives and adjoints can be calculated exactly along the
lines presented on the previous pages.

In this appendix we provide 2D versions of Theorems 4.5, 4.9, and 4.10.
Theorem A.1 (2D version of Theorem 4.5).
The only quantities which have to be changed are Σv, Στ

S,1, and Στ
P
. With

Σv =
1

2(π − µ)
ϕ0 +

τP
2(τPπ − τSµ)

Σ,

Στ
S,1 = −

α

2(π − µ)
ϕ0 +

τP
2 τS(τPπ − τSµ)

Σ,

Στ
P
=

α

2(π − µ)
ϕ0 −

1

2(τPπ − τSµ)
Σ,

the statement of Theorem 4.5 can be copied without any further changes.
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Proof. The only difference to the 3D proof concerns the computation of, compare (30),

C(µ̃, π̃)ε(v) : C̃(µ, π)ϕ0

=
(
2µ̃ ε(v) + (π̃ − 2µ̃) div v I

)
:
( 1

2µ
ϕ0 +

2µ− π

4µ(π − µ)
tr(ϕ0)I

)

= µ̃
(1
µ
ε(v) : ϕ0 −

π

2µ(π − µ)
div v tr(ϕ0)

)
+

π̃

2(π − µ)
div v tr(ϕ0).

�
Theorem A.2 (2D version of Theorem 4.9).
Theorem 4.9 remains correct for the 2D case when the 2D versions of Σv, Στ

S,1, and Στ
P

from the above theorem are taken.

Theorem A.3 (2D version of Theorem 4.10).
Theorem 4.10 remains correct for the 2D case when the definitions of the Υ’s are replaced
by

Υ
ρ
1 =

( ρ̂
ρ
+

µ̃

µ

)
ϕ0 +

( ρ̂
ρ
+

µ̂

τSµ

)
Σ, Υ

ρ
2 =

π̃µ− π

2µ(π − µ)
ϕ0 +

π̂τSµ− τPπ

2τSµ(τPπ − τSµ)
Σ,

Υv
S,1 =

( ρ̂
ρ
+

2µ̃

µ

)
ϕ0 +

( ρ̂
ρ
+

2µ̂

τSµ

)
Σ, Υv

S,2 = KS,ϕϕ0 +KS,ΣΣ,

Υτ
S,1 = −α

( ρ̂
ρ
+

2µ̃

µ

)
ϕ0 +

( ρ̂

τSρ
+

2µ̂

τ 2
S
µ

)
Σ, Υτ

S,2 = −αKS,ϕϕ0 +KS,ΣΣ/τS,

Υv
P
= KP,ϕϕ0 + τP KP,ΣΣ, Υτ

P
= −αKP,ϕϕ0 +KP,ΣΣ,

where

KS,ϕ =
2πµµ̃− µ̃π2 − π̃µ2

µ(π − µ)2
−

ρ̂

ρ

π

2(π − µ)
,

KS,Σ =
2τPπτSµµ̂− µ̂τ 2

P
π2 − π̂τ 2

S
µ2

τSµ(τPπ − τSµ)2
−

ρ̂

ρ

τPπ

2(τPπ − τSµ)
,

KP,ϕ =
ρ̂

ρ

1

2(π − µ)
+

π̃ − µ̃

(π − µ)2
,

KP,Σ =
ρ̂

ρ

1

2(τPπ − τSµ)
+

π̂ − µ̂

(τPπ − τSµ)2
.

Proof. We have

C̃(µ, π)C(µ̃2, π̃2)ε(v) =
µ̃2

µ
ε(v) +

µπ̃2 − µ̃2π

2µ(π − µ)
div v I

and

C(µ̃1, π̃1)C̃(µ, π)ϕ0 =
µ̃1

µ
ϕ0 +

µπ̃1 − µ̃1π

2µ(π − µ)
tr(ϕ0) I

so that

1

ρ
C̃ ′′(µ, π)

[
µ̃1

π̃1

] [
µ̃2

π̃2

]
∂tσ0 : ϕ0 = 2

µ̃1µ̃2

µ2
ε(v) : ϕ0
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+
µ̃2(2πµµ̃1 − µ̃1π

2 − π̃1µ
2) + π̃2µ

2(π̃1 − µ̃1)

µ2(π − µ)2
div v tr(ϕ0).

Let S0 and Sl, l = 1, . . . , L, be defined as in the proof of Theorem 4.10. Then,

S0 = ρ̂2

(( ρ̂1
ρ2

+
µ̃1

ρµ

)
ε(v) : ϕ0 +

1

ρ

π̃1µ− π

2µ(π − µ)
div v tr(ϕ0)

)

+ µ̃2

(( ρ̂1
ρµ

+
2µ̃1

µ2

)
ε(v) : ϕ0 +

(2πµµ̃1 − µ̃1π
2 − π̃1µ

2

µ2(π − µ)2
−

ρ̂1
ρ

π

2µ(π − µ)

)
div v tr(ϕ0)

)

+ π̃2

(
ρ̂1
ρ

1

2(π − µ)
+

π̃1 − µ̃1

(π − µ)2

)
div v tr(ϕ0)

and

Sl = ρ̂2

(( ρ̂1
ρ2

+
µ̂1

ρτSµ

)
ε(v) : ϕl +

1

ρ

π̂1τSµ− τPπ

2τSµ(τPπ − τSµ)
div v tr(ϕl)

)

+ µ̂2

(( ρ̂1
ρτSµ

+
2µ̂1

τ 2Sµ
2

)
ε(v) : ϕl

+
(2τPπτSµµ̂1 − µ̂1τ

2
Pπ

2 − π̂1τ
2
Sµ

2

τ 2Sµ
2(τPπ − τSµ)2

−
ρ̂1
ρ

τPπ

2τSµ(τPπ − τSµ)

)
div v tr(ϕl)

)

+ π̂2

(
ρ̂1
ρ

1

2(τPπ − τSµ)
+

π̂1 − µ̂1

(τPπ − τSµ)2

)
div v tr(ϕl).

The next steps are as in the proof of Theorem 4.10. �
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[4] J. Dieudonné, Foundations of modern analysis, Academic Press, New York-London, 1969. Pure
and Applied Mathematics, Vol. 10-I.

[5] G. Fabien-Ouellet, E. Gloaguen, and B. Giroux, Time domain viscoelastic full waveform

inversion, Geophysic. J. Int., 209 (2017), pp. 1718–1734, https://doi.org/10.1093/gji/ggx110.
[6] A. Fichtner, Full Seismic Waveform Modelling and Inversion, Advances in Geophysi-

cal and Environmental Mechanics and Mathematics, Springer-Verlag Berlin Heidelberg, 2011,
https://doi.org/10.1007/978-3-642-15807-0.

[7] A. Fichtner and J. Trampert, Hessian kernels of seismic data functionals based

upon adjoint techniques, Geophysical Journal International, 185 (2011), pp. 775–798,
https://doi.org/10.1111/j.1365-246X.2011.04966.x.

[8] F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems, SIAM J.
Numer. Anal., 37 (2000), pp. 587–620, https://doi.org/10.1137/S0036142998341246.

https://doi.org/10.1190/1.1443744
https://bit.ly/2LM0SWr
https://doi.org/10.1016/S0098-3004(02)00006-7
https://doi.org/10.1093/gji/ggx110
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1111/j.1365-246X.2011.04966.x
https://doi.org/10.1137/S0036142998341246


HIGHER ORDER DIFFERENTIABILITY FOR VISCOELASTICITY 23

[9] B. Hofmann, On ill-posedness and local ill-posedness of operator equations in Hilbert spaces, Tech.
Report 97-8, Fakultät für Mathematik, Technische Universität Chemnitz-Zwickau, D-09107 Chem-
nitz, 1997, http://www.qucosa.de/fileadmin/data/qucosa/documents/4197/data/a008.pdf.

[10] A. Kirsch and A. Rieder, Inverse problems for abstract evolution equations with ap-

plications in electrodynamics and elasticity, Inverse Problems, 32 (2016), pp. 085001, 24,
https://doi.org/10.1088/0266-5611/32/8/085001.

[11] P. Monk, Finite element methods for Maxwell’s equations, Numerical Mathe-
matics and Scientific Computation, Oxford University Press, New York, 2003,
https://doi.org/10.1093/acprof:oso/9780198508885.001.0001.

[12] A. Pazy, Semigroups of linear operators and applications to partial differential equa-

tions, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983,
https://doi.org/10.1007/978-1-4612-5561-1.

[13] J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics,
Geophysics, 74 (2009), pp. 1–26, https://doi.org/10.1190/1.3238367.

[14] P. Yang, R. Brossier, L. Métivier, and J. Virieux, A review on the systematic formulation

of 3D multiparameter full waveform inversion in viscoelastic medium, Geophys. J. Int., 207 (2016),
pp. 129–149, https:/doi.org/10.1093/gji/ggw262.

[15] E. Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986.
[16] U. Zeltmann, The Viscoelastic Seismic Model: Existence, Uniqueness and Differentia-

bility with Respect to Parameters, PhD thesis, Karlsruhe Institute of Technology, 2018,
http://dx.doi.org/10.5445/IR/1000093989.

Department of Mathematics, Karlsruhe Institute of Technology (KIT), D-76128 Karls-
ruhe, Germany

Email address : andreas.kirsch@kit.edu, andreas.rieder@kit.edu

http://www.qucosa.de/fileadmin/data/qucosa/documents/4197/data/a008.pdf
https://doi.org/10.1088/0266-5611/32/8/085001
https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
https://doi.org/10.1007/978-1-4612-5561-1
https://doi.org/10.1190/1.3238367
https:/doi.org/10.1093/gji/ggw262
http://dx.doi.org/10.5445/IR/1000093989

	1. Introduction
	2. Viscoelasticity
	3. Abstract framework
	3.1. Abstract parameter-to-solution map
	3.2. blackLocal ill-posedness

	4. Application to the viscoelastic wave equation
	4.1. blackFull waveform forward operator
	4.2. First order differentiability
	4.3. Second order differentiability
	4.4. An additional adjoint

	Appendix A. Two spatial dimensions
	References

