
Bandwith and conversion efficiency analy-
sis of dissipative Kerr soliton frequency
combs based on bifurcation theory

Janina Gärtner, Philipp Trocha, Rainer Mandel,
Christian Koos, Tobias Jahnke, Wolfgang Reichel

CRC Preprint 2018/56, December 2018

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2



Bandwidth and Conversion Efficiency Analysis
of Dissipative Kerr Soliton Frequency Combs Based on Bifurcation Theory
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Dissipative Kerr soliton frequency combs generated in high-Q microresonators may unlock novel
perspectives in a variety of applications and crucially rely on quantitative models for systematic
device design. Here, we present a global bifurcation study of the Lugiato-Lefever equation which
describes Kerr comb formation. Our study allows systematic investigation of stationary comb states
over a wide range of technically relevant parameters. Quantifying key performance parameters of
bright and dark-soliton combs, our findings may serve as a design guideline for Kerr comb generators.

I. INTRODUCTION AND MAIN RESULTS

Kerr frequency combs have the potential to revolu-
tionize a variety of applications such as high-speed data
transmission [1–3], high-precision optical ranging [4, 5]
and spectroscopy [6] as well as highly accurate optical
frequency synthesis [7]. Kerr frequency combs stand
out due to their high optical bandwidth that may ex-
ceed an octave of frequencies, narrow linewidths down
to 1 kHz, and large line spacings of tens of GHz [8–10].
Moreover, Kerr comb generators feature small footprint
and are amenable to efficient wafer-level mass produc-
tion, thereby paving the path to large-scale industrial
deployment. On a physical level, Kerr comb generators
rely on third-order nonlinear interaction in high-Q micro-
resonators that are pumped by a continuous-wave (CW)
laser [11]. Under appropriate pump conditions, cascaded
degenerate and nondegenerate four-wave mixing (FWM)
can lead to a soliton waveform that circulates in the
cavity, balancing self-phase modulation and dispersion
as well as cavity loss and parametric gain [12]. These
dissipative Kerr soliton (DKS) combs consist of strictly
equidistant phase-locked optical tones and stand out due
to smooth spectral envelopes and extraordinary robust-
ness with respect to variations of the pump conditions.
Mathematically, Kerr frequency comb generators are rep-
resented by nonlinear systems with rather complex dy-
namics. Systematic design and theory-guided improve-
ment of Kerr comb sources therefore require reliable
mathematical models that cover practically relevant pa-
rameter spaces and that combine intuitive qualitative un-
derstanding with quantitatively correct predictions of the
behavior of the nonlinear system. Kerr comb dynamics
are described by the Lugiato-Lefever equation (LLE), a
damped, driven and detuned nonlinear Schrödinger equa-
tion [13–15]. The LLE has been extensively studied, us-
ing, e.g., numerical simulations of the temporal comb for-
mation dynamics, which have reached remarkable accu-
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racy in predicting and explaining experimental results
[16, 17]. However, time-domain integration of the LLE
allows only to access specific comb states that strongly
depend on the individual device parameters as well as on
the complex interplay of the initial conditions and the
time-dependent tuning of the pump. Specifically, time-
integration techniques do not permit to globally study
the variety of different stationary Kerr comb states that
can be accessed by exploiting the full range of techni-
cally accessible device and operation parameters. This
gap can be closed by bifurcation analysis, which allows
to investigate the structure of stationary solutions and
to obtain qualitative as well as quantitative insights. So
far, stationary states of the LLE have been mainly in-
vestigated by local bifurcation analysis [14, 15, 18–23],
focusing on states in the vicinity of the trivial LLE so-
lution that consists of a single CW tone at the pumped
resonance. Global aspects in particular concerning the
snaking behavior of solution branches are discussed in
[15, 19, 20], and recently a rigorous stability analysis of
stationary states closing the gap between linearized sta-
bility and nonlinear stability was achieved in [24]. These
methods revealed a large variety of comb states, and were
partially extended via numerical continuation methods
to regions further away from the trivial state where soli-
tons occur. However, a global study that identifies pro-
nounced soliton states and favorable operation regimes
across the full range of technical accessible device and
operation parameters has not been presented so far.
In this paper, we present a global bifurcation study of
the LLE, covering a large space of technically accessible
parameters. Our analysis comprises both bright-soliton
states in resonators with anomalous group-velocity dis-
persion (GVD) [12] as well as dark solitons that form
in the presence of normal GVD [25]. For both types of
combs, we classify branches associated with single and
multi-soliton states and characterize single-soliton states
by their optical bandwidth as well as by the pump-to-
comb power transfer efficiency. Our bifurcation analysis
hence allows determining and systematically optimizing
the performance of Kerr comb generators in integrated
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photonic systems, which is of significant importance for
industrial adoption of these devices.
This paper is organized as follows: In Section II, we
introduce the Lugiato-Lefever equation and derive suf-
ficient conditions for bifurcations from the trivial state.
In Section III, we identify bifurcation branches leading to
single-soliton states and investigate the behavior of the
soliton and its characteristics along these branches. Sec-
tion IV is dedicated to a quantitative characterization of
single-soliton frequency combs using the bandwidth and
the power conversion efficiency as performance metrics.
Mathematical details and derivations can be found in the
Appendix.

II. BIFURCATION ANALYSIS FOR THE
LUGIATO-LEFEVER EQUATION

We start our our analysis from the Lugiato-Lefever equa-
tion

i
∂a

∂t
= −da′′ − (i− ζ)a− |a|2a+ if = 0 (1)

and its stationary version

−da′′ − (i− ζ)a− |a|2a+ if = 0. (2)

Here, a(t, x) is a 2π-periodic function that represents the
optical intracavity field, d is the group velocity disper-
sion parameter, and ζ the detuning of the input pump
laser as a free real-valued parameter. The forcing f corre-
sponds to the amplitude of the optical driving field. Re-
lations that connect the normalized quantities d, ζ, f to
their physical counterparts can be found in Appendix D.
In the following we consider 2π-periodic solutions a of
Eq. (2) which feature even symmetry about x = π and
therefore fulfill the Neumann boundary conditions

a′(0) = a′(π) = 0. (3)

Thus, from now on we restrict our attention to functions
a : [0, π]→ C which satisfy Eq. (2) on [0, π] together with
Eq. (3). In Fourier modes the solution is represented as
a(x) =

∑
k∈Z âkeikx with â−k = âk. The intracavity

power of the field is given by the square of the L2-norm
‖a‖22 :=

∑
k∈Z |âk|2. There are trivial solutions a0 of

Eqs. (2), (3) which are complex constants. Let us as-
sume that the trivial solution a0 can be parametrized
(locally) as a0 = a0(ζ).1 As an example, the curve
(ζ, a0(ζ)) of constant solutions is shown in black for f = 2
in Fig. 1a) in case of anomalous dispersion (d = 0.1) and
in Fig. 1d) in case of normal dispersion (d = −0.1). For

1 This assumption is for simplicity of the presentation. It fails only
at the turning points of the trivial curve, which does not lead to
any undesirable effect. Other parametrizations ζ0 = ζ0(t), a0 =
a0(t) are also possible, cf. [21].

each ζ the squared L2-norm of a0(ζ) is plotted. Note
that three different constant solutions exist for certain
values of ζ. Nontrivial solutions, associated with fre-
quency combs, may arise from the curve of trivial solu-
tions at bifurcation points, which can be defined in the
simplest form applicable for our purposes as follows: A
point P = (ζ0, a0(ζ0)) ∈ R × C on the trivial curve is
called a bifurcation point for Eqs. (2), (3) if there ex-
ists a second curve (ζs, as) of solutions of Eqs. (2), (3),
which is parameterized by s in some interval and crosses
transversally the trivial curve at P .
The structure of the solution set near (ζ0, a0(ζ0)) depends
on the properties of the linearized operator L

Lφ := −dφ′′ − (i− ζ0)φ− 2|a|2φ− a2φ̄, (4a)

φ′(0) = φ′(π) = 0. (4b)

Because of the implicit function theorem, cf. [26, The-
orem I.1.1], nontrivial solutions can only bifurcate from
the trivial branch at (ζ0, a0(ζ0)) if the kernel KerL = {φ :
Lφ = 0, φ′(0) = φ′(π) = 0} is at least one-dimensional.
This is the case provided that there is an integer k ∈ N
such that

(ζ0+dk2)2−4|a0(ζ0)|2(ζ0+dk2)+1+3|a0(ζ0)|4 = 0. (5)

Solving Eq. (5) yields

k1,2 :=

√
2|a0(ζ0)|2 − ζ0 ±

√
|a0(ζ0)|4 − 1

d
. (6)

For details on the derivation of Eqs. (5) and (6) see Ap-
pendix A. The wave number k1,2 obtained by evaluat-
ing the expression on the right side of Eq. (6) defines
the spatial periodicity 2π/k1,2, after which the nontrivial
comb state in the vicinity of the bifurcation point repeats
itself, i.e., a(x) = a(x + 2π/k1,2). Equations (5) and
(6) naturally occur in bifurcation studies of Eq. (2). In
[14, 15, 19], for instance, bifurcations are considered from
the point of view of spatial dynamics both for normal and
anomalous dispersion, and parameter regimes are deter-
mined where Turing patterns as well as 1-soliton states
bifurcate from trivial solutions. In [20] a similar approach
is taken to study bifurcation of dark solitons from triv-
ial solutions in the normal-dispersion regime. In most
of these works, bifurcations with respect to the forcing
parameter f are studied and the 2π-periodicity of the
solutions is neglected. In contrast, our work takes into
account the 2π-periodicity and our goal is a global picture
of all branches bifurcating from the trivial solution with
respect to the detuning ζ, whose physical accessible pa-
rameter space is usually larger than the parameter space
for f . With the help of Eq. (6) we can formulate the
following bifurcation result, that explains under which
conditions bifurcations from the line of trivial solutions
occur.
For a point P = (ζ0, a0(ζ0)) on the curve of trivial

solutions the following is true:
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FIG. 1: Bifurcation maps and nontrivial comb states for bright solitons in anomalous-dispersion (d > 0, top) and
dark solitons in normal-dispersion microresonators (d < 0, bottom). a) Bifurcation map of the LLE for f = 2 and

d = 0.1 indicating the normalized intracavity power ||a||22 vs. the normalized detuning ζ. The constant solution is
indicated in black, the single soliton state bifurcation branch (m = 1) in red, while blue corresponds to other
bifurcation branches of multi-soliton states with m = 2, . . . , 8 pulses circulating in the cavity. Circles indicate

bifurcation points. b) Spatial power distribution as a function of normalized intracavity position x of single-soliton
states corresponding to points A, B and to the turning point C indicated in Subfigure a). c) Spectral power

distribution of single-soliton states corresponding to points A, B and to the turning point C indicated in Subfigure
a). Note that for illustrative purposes a relatively low forcing f = 2 was chosen, resulting in a quick drop of the

power of spectral modes further away from the pump. Here the bifurcation-and-continuation method is sufficiently
precise to correctly predict spectral components which are more than 150 dB below the pump, hence safely covering
technical relevant power ranges. d) Bifurcation map of the LLE for f = 2 and d = −0.1 indicating the normalized

intracavity power ||a||22 vs. the normalized detuning ζ. Black denotes again the constant solution, red the
single-soliton state bifurcation branch, and blue corresponds to other bifurcation branches. Here, circles also mark
bifurcation points. e) Spatial power distribution as a function of normalized intracavity position x of single-soliton

states corresponding to points D, E and to the turning point F indicated in Subfigure d). f) Spectral power
distribution of single-soliton states corresponding to points D, E and to the turning point F indicated in Subfigure d).

(i) If exactly one of the two numbers k1,2 from Eq. (6)
is an integer and if the transversality condition

2|a0(ζ0)|4(|a0(ζ0)|2 − ζ0) (7)

∓ (1 + ζ20 − |a0(ζ0)|4)
√
|a0(ζ0)|4 − 1 6= 0

holds with “−” if k1 ∈ N and “+” if k2 ∈ N, then
P is a bifurcation point for Eqs. (2), (3).

(ii) If neither k1 nor k2 is an integer, then P is not a
bifurcation point for Eqs. (2), (3), and near P only
trivial solutions of Eqs. (2), (3) exist.

In the remaining cases, where either the condition (7)
fails or both k1 and k2 are integers, no statement is made.
The result mainly goes back to Theorem 4 in [21]. Com-
pared to [21] its present formulation as well as its proof
allow substantial simplifications, see Appendix B.

For the cases f = 2, d = ±0.1 we have numerically
computed the bifurcation points determined by Eq. (5).
We also checked for all bifurcation points which one of
the numbers k1,2 in Eq. (6) is an integer, and whether
the transversality condition (7) holds, cf. Table I. The
computed bifurcation points on the trivial branch are
marked by circles in Fig. 1a) and d) for d = 0.1 and
d = −0.1 respectively. In case (i) of the above result we
may apply Rabinowitz’ global bifurcation theorem from
[27] in combination with Theorem 4 in [21]. As a result
we obtain that a branch bifurcating from the trivial curve
at (ζ0, a0(ζ0)) either returns to the trivial curve at some
other bifurcation point or joins another branch of non-
trivial solutions.

In Fig. 1a) a complete picture of all branches bifurcat-
ing from the trivial branch is shown for anomalous dis-
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persion with d = 0.1. For clarity of the figures, we did not
include any secondary bifurcation branches, i.e., branches
not directly coming off the trivial branch. The analyt-
ical and numerical description of secondary bifurcations
coming with the effect of period-doubling, -tripling etc.
is provided in [28]. The branches were computed by the
software pde2path (cf. [29, 30]) which is designed to
numerically treat continuation and bifurcation of PDE
systems. Given a starting point on the trivial branch to-
gether with a tangent direction, pde2path starts a contin-
uation algorithm to compute the trivial branch. When-
ever a simple eigenvalue of the linearization crosses zero,
a bifurcation point is detected and the bifurcating branch
can be followed.

For the example given in Fig. 1a), all calculated bifur-
cation points in Table I were reproduced by pde2path.
Bifurcation branches determined by pde2path are shown
in Fig. 1a) as colored lines. Here, the single-soliton
branch (m = 1) is highlighted in red. Blue branches
are related to higher-order soliton frequency combs (m =
2, . . . , 8). Note that the bifurcation branches seem to stop
at the points where a maximal value of ζ is reached. But
in fact, these points are turning points, and each branch
continues in opposite direction on nearly the same path.
In Fig. 1d) the same analysis is performed for normal
dispersion (d = −0.1). The single-dark-soliton branch is
again marked in red. Note that pde2path does not only
generate the bifurcation map, but also allows to calcu-
late the stationary solutions of the LLE along the various
branches.

III. SOLITONS ALONG BIFURCATING
BRANCHES

For a global study, we use pde2path to explore a much
more extensive parameter space aiming at the detection
of 1-soliton states on bifurcating branches. Based on a
large number of numerical experiments, we developed
heuristics that allow to identify branches with single-
soliton states and to find the solitons with the strongest
spatial localization. Let us number the bifurcation points
and bifurcating branches along a0(ζ) starting from the
left end of the trivial branch.

(i) For anomalous dispersion (d > 0) bright 1-solitons
occur on the last bifurcating branch. The most lo-
calized 1-solitons occur near the first turning point
of this branch (locally maximizing ζ), cf. Fig. 1a).

(ii) For normal dispersion (d < 0) dark 1-solitons occur
on the first bifurcating branch. The most localized
1-solitons occur near the second turning point of
this branch (locally maximizing ζ), cf. Fig. 1d).

These heuristics are illustrated in Fig. 2, where the full-
width at half-maximum (FWHMa) in case of bright soli-
tons as well as the full-width at half-minimum (FWHMi)
in case of dark solitons is plotted for the spatial field

ζ0 a0(ζ0) k1 k2 Transv.

−0.6770 0.51 + 0.87i 5.44 5 3.67

−0.1117 0.66 + 0.94i 6 4.35 5.56

0.3325 0.79 + 0.98i 6.35 4 4.49

1.1508 1.05 + 1.00i 7 3.47 12.26

1.9646 1.34 + 0.94i 7.65 3 4.44

2.4179 1.50 + 0.87i 8 2.74 16.42

3.4759 1.87 + 0.49i 8.72 2 4.12

4.0242 2.00 − 0.05i 8.85 1 3.85

3.8603 1.73 − 0.68i 8 1.56i −22.26

3.4893 1.43 + 0.90i 7 2.13i −23.74

3.1793 1.17 − 0.99i 6 2.49i −21.14

2.9576 0.96 − 1.00i 5 2.76i −17.57

2.8218 0.80 − 0.98i 4 2.96i −14.19

2.7541 0.68 − 0.95i 3 3.09i −11.41

2.7293 0.61 − 0.92i 2 3.14i −9.32

2.7239 0.57 − 0.90i 1 3.15i −8.00

TABLE I: Bifurcation points on the trivial branch for
anomalous dispersion d = 0.1, f = 2. The coordinates

(ζ0, a0(ζ0)) shown in the first two columns are
determined so that at least one of the values k1,2 (third

and fourth column) from Eq. (6) is an integer. The
integer value of either k1 or k2 determines the

periodicity of the field in the vicinity of the
corresponding bifurcation point. The last column lists

the values obtained from evaluating the left side of
Eq. (7) in order to determine whether the transversality

condition is fulfilled.

distribution along the bifurcating branch starting from
the initial bifurcation point. Note that the bright 1-
soliton at point C in Fig. 1 a) has slightly smaller
FWHMa = 0.3330 than the bright 1-soliton at label B
(FWHMa = 0.3393). Both for normal and anomalous
dispersion, the common feature of the most localized 1-
solitons is their occurrence at maximum possible detun-
ing values within all turning points of the bifurcating
branch. These heuristics are illustrated in Fig. 1. For
different points A, B, C along the bright-single-soliton
branch and D, E, F along the dark-single-soliton branch
respectively, comb states are depicted in the spatial and
frequency domain in Fig. 1 b), c) and e), f). As expected,
the comb states with the smallest FWHMa/i identified
in points C and F by using the aforementioned heuris-
tics show the strongest localization in the spatial domain.
Furthermore, we can see that in the case of anomalous
dispersion, there is no other state on the branch m = 1
for the same value of ζ. However, in the case of normal
dispersion, we find another dark-soliton state with equal
detuning marked by point D in Fig. 1d), as e.g. discussed
in [14]. Yet point F in Fig. 1 d) shows a stronger spa-
tial localization, cf. Fig. 2, and has a broader frequency
comb than D.
In this example the soliton character of the solutions,
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FIG. 2: Full-width at half-maximum (FWHMa) of
bright solitons along the bifurcating branch for

anomalous dispersion (red, d = 0.1) and full-width at
half-minimum (FWHMi) of dark solitons for normal

dispersion (blue, d = −0.1) for f = 2.

i.e., their strong localization in the spatial domain at the
turning point is visible but not yet very pronounced due
to the moderate value of f . With increasing f the soliton
localization as well as the comb power and comb band-
width will be much enhanced. At the same time the
graphs of the bifurcation branches will be less illustra-
tive due to a steeply increasing number and density of
bifurcation points. Therefore, f = 2 is chosen merely
for illustrative reasons, and much larger ranges of f are
covered in Section IV.

IV. QUANTITATIVE CHARACTERIZATION
OF SOLITON FREQUENCY COMBS

Using the heuristics from the previous section, we are
able to identify single-soliton states with the strongest
spatial localization for a certain forcing both in the nor-
mal as well as anomalous-dispersion regime. Based on
this approach, we now characterize these comb states
a(x) =

∑
k∈Z âke

ikx by their comb bandwidth 2k? and
their power conversion efficiency (PCE) η. The comb
bandwidth is quantified by the 3dB-point, i.e., by the
minimal integer k? that fulfills |âk? |2 ≤ 1

2 |â1|
2. Note

that the 3-dB comb bandwidth is defined with respect
to the power |â1|2 of the mode directly adjacent to the
pumped mode rather than the power |â0|2 of the pumped
mode itself, which is usually much stronger than all other
modes of the comb. The PCE is the ratio between the
intracavity comb power

PFC =
∑

k∈Z\{0}

|âk|2 (8)

and the pump power f2. Note that the intracavity comb
power does not contain the zero mode, since |â0|2 mostly
stems from the pump and is therefore non-zero even if no
comb is formed in the microresonator. For bright solitons

(BS), under the assumption of small damping and small
forcing, approximation formulas for the comb bandwidth
as well as the PCE exist, cf. [12, 31–34]. Assuming a
detuning set to the maximum value that permits a single
soliton ζBS,max = π2f2/8 [12, 32], they read as follows,

2k?BS,max ≈
√

2 ln
(

1 +
√

2
) f√

d
, (9a)

ηBS,max ≈
1

f

√
d

2
. (9b)

More details on these equations can be found in Ap-
pendix C. Expressions for the approximation of dark soli-
tons resembling a flipped sech function on top of a cw-
background are given in [20], compare the green curve in
Fig. 1e). They are valid near the bifurcation point and
are obtained using multiple scale asymptotic. As men-
tioned before, this kind of solitons, indicated in Fig. 1d)
by point D, is of less interest due to its weaker localiza-
tion, reduced comb bandwidth and power compared to
the dark soliton at point F. For dark solitons of the lat-
ter type no formula for the comb bandwidth or PCE is
available to the best of our knowledge.
For dispersion parameters d = ±0.1,±0.15,±0.2,±0.25
and f > 1, we have carried out a large parameter study.
For d > 0 we computed the last bifurcation point and its
corresponding bifurcating branch. Based on the heuris-
tics in Section III we stopped the computation as soon as
we reached the first turning point, i.e. point C in Fig. 1a),
where the most localized bright soliton is found. In the
same manner the strongest localized dark solitons in the
case d < 0 are at the second turning point of the first
bifurcating branch, i.e. point F in Fig. 1d). For all of
the above values of the dispersion d and the pump power
f , the corresponding solitons at the turning point were
investigated and their comb bandwidth as well as their
PCE were evaluated.

The results are plotted in Fig. 3. For bright solitons,
gray lines corresponding to the approximate expressions
in Eq. (9a) and Eq. (9b) are also shown in a) and c). As
mentioned before, the validity of these approximations
is guaranteed only for small damping, small forcing and
large forcing/damping ratio [33, 34]. This explains the
deviations from the curves computed by numerical bifur-
cation and continuation which occur for PCE in the small
f regime (damping in (2) is set to 1) in Fig. 3c) and for
comb bandwidth in the large f regime in Fig. 3a). The
comb bandwidth increases with an increasing f at the
expense of a decreasing conversion efficiency. Addition-
ally, one can see that with d → 0 the comb bandwidth
increases whereas the PCE decreases.
For dark solitons, the overall dependence of the con-
version efficiency and comb bandwidth shows the same
trends as for bright solitons, see Fig. 3b) and d). In direct
comparison, dark solitons have a decreased bandwidth
along with a higher conversion efficiency for the same
values of f and |d|. We attribute this to the strong con-
stant background of the dark solitons in the spatial do-
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d = 0.1, ..., 0.25

Bright Solitons:

d = 0.1,
..., 0.25

Dark Solitons:

d = -0.1, ..., -0.25

d = -0.1, ..., -0.25

FIG. 3: Bandwidths 2k? and power conversion efficiencies (PCE) η for bright-soliton (a,c) and dark-soliton (b,d)
combs as a function of the forcing f and dispersion d = ±0.1,±0.15,±0.2,±0.25. a) Bandwidth of bright-soliton

combs obtained by numerical bifurcation and continuation (NBC, colored solid lines) along with an approximation
according to Eq. (9a). The linear approximation is in good agreement with the numerical results and deviates only

for a strong forcing. A stronger dispersion leads to a decreasing comb bandwidth. b) Bandwidth of dark-soliton
combs obtained by NBC. c) PCE of bright-soliton states obtained by NBC (colored solid lines) along with an
approximation according to Eq. (9b) (gray dashed lines). The approximation is in good agreement with the

numerical results, but deviates strongly for weak forcing. A weaker dispersion leads to a decreasing PCE. d) PCE of
dark-soliton states obtained by NBC. The PCE decreases with an increasing forcing, but is overall higher as for

bright solitons. Here, weaker dispersion also leads to a decreasing PCE.

main which enables a more efficient power transfer from
the continuous-wave pump to the soliton. However, the
increased spatial width of the dark solitons is also linked
to a narrower frequency comb in the spectral domain.
We note that the comb bandwidth of both bright and
dark solitons does not increase strictly linearly with an
increasing forcing. For dark solitons the nonlinear be-
havior is more pronounced.
For the physical properties of soliton frequency combs in
non-normalized units, the bandwidth 2k? as well as the
conversion efficiency η have to be converted. The physi-
cal comb bandwidth ∆ω/(2π) is obtained by multiplying
2k? with the free spectral range FSR of the resonator,
i.e., the inverse of the round-trip time TR of the light
inside

∆ω/(2π) = FSR× 2k? = T−1R × 2k?. (10)

To determine the physical conversion efficiency outside
the resonator ηout, the physical power coupling coefficient
κ between the bus waveguide and the microresonator as
well as the physical round-trip-power-loss coefficient α
have to be taken in consideration

ηout =
4κ2

(α+ κ)
2 η. (11)

For details on (11), see Appendix D. In order to achieve
high external power conversion efficiencies > 30 % as,
e.g., in [35], an overcoupled resonator with α � κ is
preferable. As visible in Fig. 3c) and d), a microres-
onator with normal dispersion enabling dark soliton
states will tend to improve the PCE. It should be
noted, however that the generation of normal-dispersion
frequency combs generally requires an avoided mode
crossing for initial modulation instability [25], which
makes the design of the device more complex.

V. SUMMARY

We have performed a global bifurcation analysis of
the Lugiato-Lefever equation and provided an overview
on the structure of nontrivial solutions. We find
single-soliton frequency combs both in the normal and
anomalous-dispersion regime. Our investigation covers
a broad space of technically relevant device and oper-
ation parameters. It allows us to identify the broad-
est soliton combs and to benchmark them with respect
to bandwidth and pump-to-comb power conversion effi-
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ciency. Our findings are in good agreement with simpli-
fied analytic models. Comparing the results for bright
and dark solitons, we find that dark solitons outperform
bright solitons significantly in terms of power conversion
efficiency at the expense of a reduced bandwidth.
The bifurcation and continuation method allows to deter-
mine the performance parameters of single-soliton comb
states even for the cases where simplified analytic models
are not valid, e.g., for certain dark solitons. Our approach
can be further extended to include additional effects such
as two-photon absorption and to study their impact on
the stationary comb states, see [36]. The results of our

investigation allow for targeted design of soliton comb
generators for specific applications. In this context, the
power conversion efficiency and the comb bandwidth are
key performance characteristics that need to be opti-
mized under technical restrictions such as limited optical
input power.
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APPENDIX A: IDENTIFICATION OF BIFURCATION POINTS

Here we derive the expression that allows to identify bifurcation points on the curve of trivial solutions to the stationary
Lugiato-Lefever equation with Neumann boundary conditions

−da′′ − (i− ζ)a− |a|2a+ if = 0, (A1)

a′(0) = a′(π) = 0. (A2)

The structure of solutions a : [0, π]→ C depends on the properties of the linearized operator L

Lφ := −dφ′′ − (i− ζ0)φ− 2|a|2φ− a2φ̄, (A3a)

φ′(0) = φ′(π) = 0. (A3b)

We denote the kernel of the differential operator L by KerL = {φ : Lφ = 0, φ′(0) = φ′(π) = 0} and its range by
RgL = {Lφ : φ′(0) = φ′(π) = 0}, where the functions φ : [0, π] → C are twice continuously differentiable. For such
a function φ 6= 0 we denote by span{φ} = {tφ : t ∈ R} the one-dimensional space of all real multiples of φ and by
span{φ}⊥ = {ψ :

∫ π
0
φ(x)ψ̄(x) dx = 0} its L2-orthogonal complement. In the following we write a0 instead of a0(ζ0),

but we keep the notation a0(ζ) if we want to stress the ζ-dependence of the trivial solution. Let us abbreviate the
nonlinearity in Eq. (A1) by g(a) = |a|2a − if . The derivative Dg(a)z := d

dtg(a + tz)|t=0 = 2|a|2z + a2z̄ for a, z ∈ C
can also be written in the form

Dg(a)z =

(
3(Re a)2 + (Im a)2 2 Re a Im a

2 Re a Im a (Re a)2 + 3(Im a)2

)(
Re z

Im z

)
. (A4)

Note that Dg(a) appears in the definition (A3) of the linearized operator L. Besides the linearized operator L given
in Eq. (A3) we also consider its adjoint operator

L∗φ = −d d
2

dx2
φ+ (i + ζ0)φ−Dg(a0(ζ0))φ, φ′(0) = φ′(π) = 0, (A5)

which will be used below. Next we will compute the spaces KerL, KerL∗, which have the same finite dimension since
both L and L∗ are Fredholm operators. Owing to the Neumann boundary conditions, any element φ ∈ KerL can
be expanded in the form φ(x) =

∑∞
l=0 αl cos(lx). Since {cos(lx)}l∈N0 is a basis and L is linear the condition that

φ ∈ KerL means that there is at least one integer k ∈ N0 such that L(α cos(kx)) = (dk2−i+ζ0−Dg(a0))α cos(kx) = 0
for some α = (Reα, Imα) ∈ C \ {0}. Using Eq. (A4) it follows that dk2 must be an eigenvalue of the matrix

N =

(
−ζ0 + 3(Re a0)2 + (Im a0)2 2 Re a0 Im a0 − 1

2 Re a0 Im a0 + 1 −ζ0 + (Re a0)2 + 3(Im a0)2

)
(A6)

with eigenvector α. Non-zero elements in KerL exist if det(−dk2 Id +N) = 0 and computing this determinant yields

(ζ0 + dk2)2 − 4|a0(ζ0)|2(ζ0 + dk2) + 1 + 3|a0(ζ0)|4 = 0. (A7)
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Solving for k leads to k1,2 given by the following equation:

k1,2 :=

√
2|a0(ζ0)|2 − ζ0 ±

√
|a0(ζ0)|4 − 1

d
. (A8)

Likewise, non-zero elements in KerL∗ exist if det(−dk̃2 Id +NT ) = 0 for some integer k̃ ∈ N0. Since

det(−dk̃2 Id +NT ) = det(−dk̃2 Id +N), this leads to the same formula (A8) for k̃1,2. In the remaining part of this
section we write k as a shorthand for one of the two values k1,2. Consequently, under the condition (A7) there is a
vector α and a vector α∗ such that α cos(kx) ∈ KerL and α∗ cos(kx) ∈ KerL∗.

Now we determine α and α∗ under the condition (A7). In the matrix N − dk2 Id the first or the second line could
be zero (but not both). Therefore, the eigenvector α of (A6) is given in the form

α =

(
2 Re a0 Im a0 − 1

ζ + dk2 − 3(Re a0)2 − (Im a0)2

)
or α =

(
ζ + dk2 − (Re a0)2 − 3(Im a0)2

2 Re a0 Im a0 + 1

)
(A9)

such that (−dk2 Id +N)α = 0, and hence α cos(kx) belongs to KerL. The first choice can be taken if 2 Re a0 Im a0−1 6=
0 and the second choice if 2 Re a0 Im a0 + 1 6= 0. Likewise,

α∗ =

(
ζ + dk2 − (Re a0)2 − 3(Im a0)2

2 Re a0 Im a0 − 1

)
or α∗ =

(
2 Re a0 Im a0 + 1

ζ + dk2 − 3(Re a0)2 − (Im a0)2

)
(A10)

with α∗ = (Reα∗, Imα∗) ∈ C satisfies (−dk2 Id +NT )α∗ = 0 and leads to an element α∗ cos(kx) ∈ KerL∗. As before,
the first choice can be taken if 2 Re a0 Im a0 − 1 6= 0 and the second choice if 2 Re a0 Im a0 + 1 6= 0.

We can exclude the case k1 = 0 or k2 = 0 in the bifurcation condition (A7) since it would only lead to bifurcation
of trivial solutions, and we are interested in non-trivial solutions. The kernel of L will be one-dimensional provided
that in Eq. (A7) we have k1 ∈ N and k2 6∈ N or vice versa, and two-dimensional if both k1, k2 ∈ N. If neither k1
or k2 are in N, then KerL = KerL∗ = {0}, and the implicit function theorem (cf. [26, Theorem I.1.1]) implies that
solutions nearby the point (ζ0, a0) are unique, and therefore trivial. Hence, (ζ0, a0) cannot be a bifurcation point in
this case, and therefore the necessary bifurcation condition is that k1 ∈ N or k2 ∈ N. The same condition, expressed
in the form of Eq. (A7), is given in [21, Proposition 10].

APPENDIX B: TRANSVERSALITY CONDITION

According to the Crandall-Rabinowitz theorem (cf. [37, Theorem I.5.1] and [26]) two conditions are sufficient for
bifurcation. The first is that KerL is one-dimensional, i.e., with k1, k2 from (A8), we need that k1 ∈ N, k2 6∈ N or
vice versa, and we write k for the one which is the integer. As we will see the second condition (the transversality
condition) is given by

2|a0(ζ0)|4(|a0(ζ0)|2 − ζ0)∓ (1 + ζ20 − |a0(ζ0)|4)
√
|a0(ζ0)|4 − 1 6= 0 (B1)

with “−” if k1 ∈ N and “+” if k2 ∈ N. To verify that (B1) together with the one-dimensionality of the kernel is really
sufficient for bifurcation we need to bring our problem into the form used in [37]. Nontrivial solutions of Eqs. (A1),
(A2) may be written as a(x) = a0(ζ) + b(x) with b′(0) = b′(π) = 0. From Eqs. (A1), (A2) we derive the equation for
the function b in the form

F (ζ, b) := −db′′ − (i− ζ)(a0(ζ) + b)− g(a0(ζ) + b) = 0 (B2)

where F is defined on R×H with H given as the real Hilbert space of twice almost everywhere differentiable functions
b : [0, π]→ C with b′(0) = b′(π) = 0 and b, b′′ being square integrable. Notice that F (ζ, 0) = 0 for all ζ, i.e., the curve
of trivial solutions (ζ, a0(ζ)) for Eqs. (A1), (A2) has now become the line of zero solutions (ζ, 0) for Eq. (B2). Let
us write D2

b,ζF (ζ0, 0) for the mixed second derivative of F with respect to b and ζ at the point (ζ0, 0). In our case,

where F is defined by (B2) we find for the mixed second derivative

D2
b,ζF (ζ0, 0)φ = φ−D2g(a0)(φ, ȧ0) = φ− 2ā0φȧ0 − 2a0φȧ0 − 2a0φ̄ȧ0 (B3)
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where ȧ0 = d
dζ a0(ζ)|ζ=ζ0 is the tangent direction along the curve ζ 7→ a0(ζ) at the point ζ0. According to [37], the

transversality condition is expressed by

D2
b,ζF (ζ0, 0)φ 6∈ Rg(DbF (ζ0, 0)),

with φ such that Ker(DbF (ζ0, 0)) = span{φ}. In our case DbF (ζ0, 0) = L, where L is the linearized operator given
in Eq. (A3). By the Fredholm alternative, cf. [38], RgL = (KerL∗)⊥ = span{φ∗}⊥, where φ(x) = α cos(kx),
φ∗(x) = α∗ cos(kx) with α from Eq. (A9) and α∗ from Eq. (A10). Here orthogonality u ⊥ v of two functions u, v ∈ H
is understood as vanishing of the inner product 〈u, v〉 = Re

∫ π
0
u(x)v̄(x) dx. Hence, transversality is expressed as

〈D2
b,ζF (ζ0, 0)φ, φ∗〉 = Re

∫ π

0

(
D2
b,ζF (ζ0, 0)φ

)
φ∗ dx 6= 0 (B4)

and we will show next that this amounts to

〈D2
b,ζF (ζ0, 0)φ, φ∗〉 =

−π(2 Re a0 Im a0 ∓ 1)

3|a0|4 − 4|a0|2ζ0 + ζ20 + 1

(
(dk2 − ζ0)|a0|4 + (ζ20 + 1)(2|a0|2 − dk2 − ζ0

)
. (B5)

In order to evaluate D2
b,ζF (ζ0, 0)φ we first need to determine the tangent ȧ0 = d

dζ a0(ζ)|ζ=ζ0 . Differentiating the

equation (i− ζ)a0(ζ) + g(a0(ζ)) = 0 with respect to ζ and evaluating the derivative at ζ0 we get(
Dg(a0) + i− ζ0

)
ȧ0 = a0.

Recalling that Dg(a0)z = 2|a0|2z + a20z̄ we thus find

(2|a0|2 + i− ζ0)ȧ0 + a20ȧ0 = a0

and hence

ȧ0 = τa0 with τ =
|a0|2 − ζ0 − i

3|a0|4 − 4|a0|2ζ0 + ζ20 + 1
. (B6)

Inserting ȧ0 from Eq. (B6) into Eq. (B3) we deduce that the transversality condition (B4) becomes

〈D2
b,ζF (ζ0, 0)φ, φ∗〉 =

π

2
Re
(
αα∗ − 4 Re τ |a0|2αα∗ − 2τa20ᾱα

∗
))
6= 0 (B7)

Depending on the alternatives in Eqs. (A9), (A10) for the actual form of α, α∗ we obtain

Reαα∗ = (2 Re a0 Im a0 ∓ 1)(2ζ0 + 2dk2 − 4|a0|2).

Likewise

ᾱα∗ =(2 Re a0 Im a0 ∓ 1)(ζ0 + dk2 − (Re a0)2 − 3(Im a0)2)− (2 Re a0 Im a0 ∓ 1)(ζ0 + dk2 − 3(Re a0)2 − Im(a0)2)

− i
(

(2 Re a0 Im a0 ∓ 1)2 + (ζ0 + dk2 − 3(Re a0)2 − (Im a0)2)(ζ0 + dk2 − (Re a0)2 − 3(Im a0)2)︸ ︷︷ ︸
(A7)
= 4(Re a0)2 Im(a0)2−1

)

=(2 Re a0 Im a0 ∓ 1)2ā20

where we have used the necessary bifurcation condition (A7). Taking the expressions for Reαα∗ and a20ᾱα
∗ into the

transversality condition (B7) finally leads to

〈D2
b,ζF (ζ0, 0)φ, φ∗〉 =

π

2
Re
(
αα∗ − 4 Re τ |a0|2αα∗ − 2τa20ᾱα

∗
))

=
π

2
(2 Re a0 Im a0 ∓ 1)

(
(2ζ0 + 2dk2 − 4|a0|2)(1− 4 Re τ |a0|2)− 4 Re τ |a0|4

)
6= 0.

Since the choice in Eqs. (A9), (A10) was made so that the factor (2 Re a0 Im a0 ∓ 1) is non-zero, the non-vanishing of

the expression in brackets amounts to (after inserting Re τ = |a0|2−ζ0
3|a0|4−4|a0|2ζ0+ζ20+1

)

(dk2 − ζ0)|a0|4 + (ζ20 + 1)(2|a0|2 − dk2 − ζ0) 6= 0.

We have therefore verified (B5), and using the definition k1, k2 from Eq. (A8) we obtain the transversality condition
in its final form (B1), where only a0 and ζ0 appear.
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APPENDIX C: APPROXIMATIONS FOR THE BRIGHT-SOLITON POWER CONVERSION
EFFICIENCY ηBS,max AND COMB BANDWIDTH 2k?BS,max

For bright solitons, a closed form approximation [12, 31–34] of the intracavity field is given by

a(x) ≈ Ψ0 + Ψ1(x) = Ψ0 +Beiϕ0 sech

(
B√
2d
x

)
. (C1)

Here, Ψ1(x) represents the field of a bright soliton on top of a constant background field Ψ0, B ≈
√

2ζ defines the

width and the amplitude of the soliton, and ϕ0 = arccos
(√

8ζ
πf

)
is the relative phase of the soliton with respect to Ψ0.

For strong solitons, the intracavity field will be dominated by the soliton itself, such that a(x) ≈ Ψ1(x). For a given
forcing, the maximum detuning can be derived by the condition that the argument of the arccos function may not

exceed 1, cf. supplementary information in [12]. For a maximum detuning ζmax = π2f2

8 , ϕ = 0 and the intracavity
field reads

a(x) ≈ πf

2
sech

(
πf

2
√

2d
x

)
. (C2)

Given this expression, the power conversion efficiency at the maximum detuning for bright solitons can be computed
by an integral in the spatial domain,

ηBS,max =

1
2π

∫ π
−π

∣∣∣πf2 sech
(

πf

2
√
2d
x
)∣∣∣2 dx

f2
=

1

f

√
d

2
tanh

(
πf

2
√

2d
π

)
≈ 1

f

√
d

2
. (C3)

In order to determine the comb bandwidth, we calculate the Fourier coefficients associated with the various comb
lines. The power spectrum is given by the magnitude square of these coefficients,

|âk|2 =

∣∣∣∣ 1

2π

∫ π

−π

πf

2
sech

(
πf

2
√

2d
x

)
e−ikx dx

∣∣∣∣2
≈
∣∣∣∣ 1

2π

∫ ∞
−∞

πf

2
sech

(
πf

2
√

2d
x

)
e−ikx dx

∣∣∣∣2 =
d

2
sech2

(√
2d

f
k

)
. (C4)

The full-width at half-maximum bandwidth xFWHM of the sech2 function is given by the condition

sech2
(xFWHM

2

)
=

1

2
, (C5)

which leads to xFWHM = 2 ln
(
1 +
√

2
)
. This leads to the FWHM bandwidth 2k?BS,max,

2k?BS,max =
f√
2d
xFWHM =

√
2 ln

(
1 +
√

2
) f√

d
. (C6)

For a representation of the Eqs. (C3) and (C6) in physical, i.e., non-normalized units, see, e.g., [31, 32].

APPENDIX D: PHYSICAL POWER CONVERSION EFFICIENCY OUTSIDE OF THE
MICRORESONATOR

In physical terms, the time-dependent Lugiato-Lefever equation [39] is given by

TR
∂E(T, τ)

∂T
=
√
κ
√
Pin +

(
−α

2
− κ

2
− iδ0 − i

β2
2
L
∂2

∂τ2
+ iγL |E(T, τ)|2

)
E(T, τ). (D1)

Here, TR is the round-trip time of light circulating in the resonator, E the electric field, T the physical time, τ the
round-trip position inside the resonator, κ the power-coupling coefficient of the bus waveguide and the microresonator,
Pin the power of the pump light, α the power round-trip loss, β2 the second order dispersion coefficient, L the
circumference, and γ the nonlinearity coefficient of the microresonator. The detuning δ0 = (ωr − ωp)TR is defined
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by the difference between the angular frequency of the pump laser ωp, the angular resonance frequency ωr and the
round-trip time.

The normalized field a(t, x) for x ∈ [0, 2π) and the normalized quantities ζ and d satisfy the time-dependent
normalized Lugiato-Lefever equation

∂a(t, x)

∂t
= f +

(
−1− iζ + id

∂2

∂x2
+ i|a(t, x)|2

)
a(t, x),

and are related to the physical parameters E and Pin, γ, α, κ, δ0, TR and β2 via

a(t, x) =

√
2γL

α+ κ
E
(
T, τ

)
, (D2)

t =
α+ κ

2

T

TR
, (D3)

x =
2π

TR
τ, (D4)

f =

√
2γL

α+ κ

2
√
κ

α+ κ

√
Pin, (D5)

ζ =
2δ0
α+ κ

, (D6)

d =
−4π2β2L

(α+ κ)T 2
R

. (D7)

For the field E(T, τ) =
∑
k∈Z Êk(T )eik2πτ/TR , the intracavity-power is given by 1

TR

∫ TR

0
|E(T, τ)|2 dτ =

∑
k∈Z |Êk|2.

The power of the frequency comb is defined as power of the intracavity-field excluding the pumped mode, Pp,FC =∑
k∈Z\{0} |Êk|2. The pumped mode is excluded since it will have a non-zero value even if no frequency comb is formed.

The physical power conversion efficiency ηin inside the microresonator can then be expressed as

ηin =
Pp,FC

Pin
=

∑
k∈Z\{0} |Êk|2

Pin
. (D8)

When the comb is coupled out of the microresonator, the field amplitude is decreased by the square root of the
power-coupling coefficient κ. Therefore, the physical conversion efficiency with respect to the comb power outside of
the resonator ηout is given by

ηout :=

∑
k∈Z\{0} |

√
κÊk|2

Pin
= κηin. (D9)

Given the relations (D2), (D5), the normalized power conversion efficiency η defined as the ratio between the power
of the normalized frequency comb

∑
k∈Z\{0} |âk|2 and the normalized forcing power f2 can be expressed by physical

quantities as follows

η =

∑
k∈Z\{0} |âk|2

f2
=

∑
k∈Z\{0}

∣∣∣√ 2γL
α+κ Êk

∣∣∣2(√
2γL
α+κ

2
√
κ

α+κ

√
Pin

)2 =
(α+ κ)

2

4κ
ηin =

(α+ κ)
2

4κ2
ηout. (D10)

This is equivalent to Eq. (11) of the main manuscript.

[1] J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos,
and Y. K. Chembo, Phys. Rev. Let. 114, 1 (2015).

[2] J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss,
R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, Nat. Photon.
8, 375 (2014).



12

[3] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H.
Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, Nature 546, 274 (2017).

[4] M.-G. Suh and K. Vahala, Science 887, 884 (2017).
[5] P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann,

S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, Science 359, 887 (2018).
[6] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. Vahala, Science 6516, 600 (2016).
[7] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone,

N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M. G. Suh, K. Y. Yang, M. H. Pfeiffer, T. J. Kippenberg,
E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp,
Nature 557, 81 (2018).

[8] M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, Optica 4, 684
(2017).

[9] C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, Opt. Lett. 41,
2565 (2016).

[10] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J.
Kippenberg, Optica 5, 3 (2018).

[11] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[12] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photon. 8,

145 (2014).
[13] L. Lugiato and R. Lefever, Phys. Rev. Let. 58, 2209 (1987).
[14] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, Phys. Rev. A 89, 063814 (2014).
[15] P. Parra-Rivas, D. Gomila, L. Gelens, and E. Knobloch, Phys. Rev. E 97, 042204 (2018).
[16] H. Guo, M. Karpov, E. Lucas, A. Kordts, V. Pfeiffer, Martin H. P. Brasch, G. Lichachev, V. E. Lobanov, M. L. Gorodetsky,

and T. J. Kippenberg, Nat. Phys. 13, 94 (2016).
[17] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, Optica 2, 1078 (2015).
[18] C. Godey, Eur. Phys. J. D 71, 131 (2017).
[19] P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and L. Gelens, Phys. Rev. A 89, 043813 (2014).
[20] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, Phys. Rev. A 93, 1 (2016).
[21] R. Mandel and W. Reichel, SIAM J. Appl. Math. 77, 315 (2017).
[22] T. Miyaji, I. Ohnishi, and Y. Tsutsumi, Physica D 239, 2066 (2010).
[23] L. Delcey and M. Haragus, Philos. Trans. of the Roy. Soc. A 376, 20170188 (2018).
[24] M. Stanislavova and A. G. Stefanov, J. Math. Phys. 59, 101502, 12 (2018).
[25] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, Nat. Photon. 9, 594

(2015).
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