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We derive a model to describe the interaction of an rf-SQUID (radio frequency Superconducting
QUantum Interference Device) based metasurface with free space electromagnetic waves. The elec-
tromagnetic fields are described on the base of Maxwell’s equations. For the rf-SQUID metasurface
we rely on an equivalent circuit model. After a detailed derivation, we show that the problem that
is described by a system of coupled differential equations is wellposed and, therefore, has a unique
solution. In the small amplitude limit, we provide analytical expressions for reflection, transmission,
and absorption depending on the frequency. To investigate the nonlinear regime, we numerically
solve the system of coupled differential equations using a finite element scheme with transparent
boundary conditions and the Crank-Nicolson method. We also provide a rigorous error analysis that
shows convergence of the scheme at the expected rates. The simulation results for the adiabatic
increase of either the field’s amplitude or its frequency show that the metasurface’s response in the
nonlinear interaction regime exhibits bistable behavior both in transmission and reflection.

PACS numbers: 85.82.Dq, 78.67.Pt, 41.20.Jb

INTRODUCTION

In the last years, researchers spent tremendous efforts
in understanding and developing electrodynamic meta-
materials that operate at different frequencies from the
GHz range up to the visible1–5. Metamaterials consist of
unit cells that are mostly periodically arranged in space.
These artificially structured materials are designed to of-
fer control on the propagation of electromagnetic fields
inaccessible with natural materials6. For that, one re-
lies frequently on tiny structures inside a host medium
to form the unit cells: the metaatoms. Metaatoms shall
assure a strong interaction of the electromagnetic field
with matter. Therefore, resonances are often exploited.
Moreover, controlling the scattering properties of the in-
dividual metaatom is key to tailor the emerging material
properties. For a long time, a magnetic response had
been looked after but many more properties can be tai-
lored. The metaatoms themselves can be described by
purely classical means, e.g., within the context of electro-
dynamics itself if they are made from ordinary materials
such as dielectrics or metals7, but also by quantum me-
chanical means if required. That would hold when the
metaatom consists of, e.g., a flux qubit as an artifical
two-level system8.

A referential example for a metaatom with a strong
magnetic response is the split ring resonator (SRR)9–12.
An SRR is a metal ring acting as an inductance with
a small gap forming a capacitance, i.e., an LC-circuit.
In a natural way, determined by its geometry and mate-
rial, the SRR has a resonance frequency. However, the
downside of using resonant structures made from ordi-
nary metals is (a) a spurious intrinsic absorption that
lowers the quality factors and with that the achievable
dispersion in the effective properties of the actual meta-

material and (b) their limitation to a fixed resonance fre-
quency upon fabrication1.

Both aspects can be mitigated while relying on super-
conducting materials in the design of metaatoms. First
of all, superconductors do not suffer from dissipation13

because they carry current that is not subject to Ohmic
resistance due to the bosonic character of their charge
carriers14. That requires, however, an operational fre-
quency corresponding to an energy that is smaller than
the binding energy of the Cooper pairs. This restricts the
use of superconductor based metamaterials to the GHz
or at most the lower THz frequency range. But supercon-
ductors also solve the second aforementioned problem as
their properties sensitively dependent on the environmen-
tal temperature15 and magnetic fields they are exposed
to13,16–18. Thus, external parameters have an impact on
the intrinsic resonance properties of the metaatoms.

A further option to tune metamaterials is by exploit-
ing nonlinear effects in the interaction of the electro-
magnetic wave with the metamaterial. A well under-
stood nonlinear element in the fields of superconductiv-
ity is the Josephson junction (JJ)19. It introduces both
nonlinearity into the system and makes use of the low-
loss properties of superconducting charge transport. In
2007, it was proposed to put Josephson junctions into the
gap of an SRR made of superconducting material and
to use these devices as metaatoms20. Such structures
are called rf-SQUID ring resonators (radio frequency
Superconducting QUantum Interference Device). They
are already well investigated in the context of transmis-
sion line theory16,21,22. Additionally, rf-SQUID rings pro-
vide a tunable intrinsic inductivity via an externally ap-
plied magnetic field16. Hence, an rf-SQUID is a natural
and promising candidate as a building block to create
novel, efficient, and tunable metamaterials.
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Besides metamaterials as volumetric matter, is has
been appreciated that comparable control over electro-
magnetic fields can be offered by metasurfaces, i.e., thin
films made from a monolayer of metaatoms. Then, its
not refraction and diffraction in the bulk media that shall
be controlled but rather reflection and transmission from
an array23–26. In that context, a question of scientific
importance concerns the proper description of rf-SQUID
based metasurfaces and the exploration of their linear
and nonlinear properties. The present contribution de-
velops a comprehensive theoretical framework for that
purpose and explores linear and nonlinear properties.

We start by developing an interaction model of free
space electromagnetic waves with a thin film loaded with
rf-SQUIDs. In the spirit of the metasurface, we assume
the spatial extent of the metaatom LMA to be much
smaller than the operational wavelength λ of the inci-
dent wave27, i.e., LMA � λ. The thickness d of the
metasurface is considered to be much smaller than the
wavelength λ of the incident light, i.e., d � λ. Hence,
the interaction region can be regarded as infinitesimally
thin in the propagation direction of the waves28. On the
one hand, we will describe the dynamics of the system by
the continuity of the magnetic field and a jump disconti-
nuity of its first derivative with respect to space, derived
from Maxwell’s equations29,30. On the other hand, we
will use circuit theory and macroscopic quantum effects
to describe the inner dynamics of the current and voltage
drop inside the rf-SQUID. From these considerations we
derive in Section I two coupled differential equations that
describe (a) the propagation of the incident field cou-
pled to the rf-SQUIDs and (b) the temporal evolution
of the internal dynamics of the rf-SQUID metasurface.
The wellposedness of our system of equations is proven
in Section II. We take this as a justification for the re-
liability of our approach. The optical response of the
metasurface in the linear regime is discussed analytically
in Section III. Selected properties of the optical response
of the metasurface in the nonlinear regime are discussed
numerically in Section IV. For these simulations, we out-
line an efficient scheme and discuss details of the spatial
and temporal discretization of the governing differential
equations. This discussion also contains a rigorous error
analysis showing error estimates for both discretizations.
Finally, we conclude on our work in Section V.

I. DERIVATION OF THE MODEL

The derivation of a model that describes the interac-
tion of an rf-SQUID ring film with an electromagnetic
wave will take into account Maxwell’s theory of electro-
dynamics and circuit theory to express the dynamics in
the rings. For the latter we rely on the resistively and
capacitively shunted junction model (RCSJ model) of
the Josephson junction (JJ) in the rf-SQUID ring28,31,32.
Moreover, we use models of macroscopic quantum ef-
fects, such as the Josephson effects and flux quantization.

These different aspects are documented in the following
subsections. The final purpose of this section is to de-
rive a set of coupled differential equations [cf. (29)] that
describe in a self-consistent manner the evolution of the
electromagnetic field and the internal dynamics in the
rf-SQUID ring film.

A. Electrodynamics - Maxwell’s equations

To describe the interaction of an rf-SQUID ring film
with electromagnetic fields, we start with Maxwell’s
equations describing the evolution of electromagnetic
fields in time33,

~∇× ~E(~r, t) = −∂t ~B(~r, t), (1a)

~∇× ~H(~r, t) = ~j(~r, t) + ∂t ~D(~r, t), (1b)

~∇ · ~D(~r, t) = ρ(~r, t), (1c)

~∇ · ~B(~r, t) = 0. (1d)

We set the polarization and the magnetization of the
film’s host material to zero, since for simplicity, we con-
sider the film to be located in vacuum, such that

~D(~r, t) = ε0
~E(~r, t), (2a)

~B(~r, t) = µ0
~H(~r, t). (2b)

Differentiating (1a) with respect to time and applying
the curl operator to (1b) together with (2) yields

∂2
t
~H(~r, t) + c2~∇× ~∇× ~H(~r, t) = c2~∇×~j(~r, t), (3)

where c is the speed of light in vacuum. This is the
governing wave equation that we have to solve to express
the dynamics of the electromagnetic field.

We assume that the film comprising the rf-SQUID
rings has a thickness of d = 2a. Without loss of generality
it is located around z = 0 inside the x-y-plane, such that
z ∈ [−a, a]. This thickness shall be much smaller than
the wavelength of the incident light, i.e., d � λ. The
orientation of the rings can be arbitrary but we bias our
description towards the assumption that the strongest in-
teraction is observed when the rings are upright in the
film and the normal vector of the rf-SQUID rings points
in y-direction. We consider normally incident light which
renders our model to be translationally invariant in x-y-

direction, thus ~H(~r, t) = ~H(z, t). Moreover, we assume
linear polarization for the magnetic field in y-direction.
This assures a strong coupling of the magnetic field to
the ring at their preferential orientation.

We start with the evaluation of the left-hand side of
(3) and have a look at the double curl of the linearly

polarized magnetic field ~H(~r, t) = Hy(z, t)êy. It needs a

special treatment since the magnetic field ~H is not differ-
entiable twice with respect to space. We make a piece-
wise ansatz in the three different regions of space (to the
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left, to the right, and inside the film) and introduce the
notation

~HΣ(z) := ~H−(z)Θ(−z − a) + ~H0(z)Θ(a− z)Θ(a+ z)

+ ~H+(z)Θ(z − a), (4)

where ~H is forced to be continuous, i.e.,

~H−(−a) = ~H0(−a), ~H0(a) = ~H+(a). (5)

We compute

∂zH
Σ
y = (∂zHy)

Σ
+
(
H0
y −H−y

)
δ(z + a)

+
(
H+
y −H0

y

)
δ(z − a)

= (∂zHy)
Σ
, (6)

using the chain rule ∂zΘ(f(z)) = δ(f(z))∂zf(z) and (5).
Following the same arguments as before, we arrive at

∂z (∂zHy)
Σ

=
(
∂2
zHy

)Σ
+
(
∂zH

0
y − ∂zH−y

)
δ(z + a)

+
(
∂zH

+
y − ∂zH0

y

)
δ(z − a). (7)

Note that the differences in the brackets do not vanish
in general. However, performing the limit a→ 0, we can
simplify the expression further and get

~∇× ~∇× ~HΣ = −∂z (∂zHy)
Σ
êy (8)

= −∂2
zHy êy +

(
∂zH

−
y − ∂zH+

y

)
δ(z)êy.

For the evaluation of the right-hand side of (3), consider
a current density created by a current flowing within a
superconducting metal ring. We parametrize the current
density in the plane y = 0 that fully contains the en-
closed area of the ring. Therefore, one can parametrize
the current density’s motion as

~j(~r, t) =
I(t)

2b

 z
0
−x

Θ(Ra − ρ)Θ(ρ−Ri), (9)

where ρ =
√
x2 + z2, Ri = R − b and Ra = R + b are

the inner and outer radius of the ring, respectively, and
2b is its thickness. Due to the cylindrical symmetry, at
the position of the origin, where the center of the ring is
placed and the interaction with the electromagnetic field
takes place, we see that(

~∇×~j(~r, t)
)
x

=
(
~∇×~j(~r, t)

)
z

= 0. (10)

The curl of the current density in (9) is therefore given
by

~∇×~j(~r, t) =
I(t)

b
Θ(Ra − ρ)Θ(ρ−Ri)êy (11)

+
I(t)

2b
ρ [δ(ρ−Ri)− δ(Ra − ρ)] êy.

After expressing Ra and Ri through R and shrinking the
ring (R → 0), such that it is contained inside the thin
film, (11) reads

~∇×~j(~r, t) =
I(t)

b
Θ(b− ρ)Θ(b+ ρ)êy (12)

+
I(t)

2b
ρ [δ(b+ ρ)− δ(b− ρ)] êy.

In the limit of a vanishing thickness of the ring, such that
b→ 0, we notice, that

lim
b→0

δ(b+ ρ) = lim
b→0

δ(b− ρ) = δ(ρ), (13a)

lim
b→0

Θ(b+ ρ)Θ(b− ρ)

2b
= δ(ρ). (13b)

Therefore, only the fist term in (12) remains and we are
left with

lim
b→0

~∇×~j(~r, t) = 2I(t)δ(ρ)êy. (14)

The Dirac distribution in (14) confines the curl of the cur-
rent density to z = 0. Since the model for the entire film
is assumed to be translationally invariant in x-direction,
we omit the confinement to x = 0 here. This accounts for
the existence of other rings along the x-direction inside
the film. For an arbitrarily oriented ring’s area with unit
normal vector ~n, from (3), (8) and (14), we can summa-
rize

∂2
t
~H − c2∂2

z
~H =

(
∂z ~H

+ − ∂z ~H− + 2I~n
)
c2δ(z), (15)

linking the current’s motion in the ring and the hereby

radiated magnetic field ~H. Please note, that for z 6= 0,
we deal with a free wave equation for the magnetic field
in the negative and positive half space, respectively,(

∂2
t − c2∂2

z

)
~H(~r, t) = 0. (16)

Additionally, from (15), we obtain a jump condition for
the first spatial derivative of the magnetic field at the
position of the film z = 0,

∂z ~H
+(0, t)− ∂z ~H−(0, t) = −2I(t)~n, (17)

illustrating that ~H is not differentiable twice at z = 0.
The latter two equations are the most important equa-
tions describing the evolution of the field coupled to a
film that carries a current. In the next subsection we
elaborate on the details of the rf-SQUID ring to express
the current in the film that is driven by an external field.

B. Circuit theory - Kirchhoff’s rules

We apply the RCSJ model of a Josephson junction to
the rf-SQUID ring31,34. It states, that a JJ can be re-
placed in circuit diagrams by the junction itself (JJ), a
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shunted capacitor (C), and a shunted resistor (R). Ad-
ditionally, the ring’s loop is taken into account as an in-
ductance connected in series, see Fig. 1(b). Kirchhoff’s
nodal rule yields

Iring(t) = IC(t) + IR(t) + IJJ(t)

= C∂tU(t) +
U(t)

R
+ IJJ(t). (18)

Kirchhoff’s mesh rule yields
∑

ring U(t) = −∂tΦring(t),

where Φring(t) denotes the flux penetrating the ring’s en-
closed surface acting as the electromotive force. As the
voltage drop across all of the three shunted elements is
the same, we pick the voltage drop across the JJ for con-
venience and write

UJJ(t) = −∂tΦring(t). (19)

C. Macroscopic quantum effects

To link the current through a Josephson junction and
the voltage drop across it to the phase difference ϕ of
the superconducting wave functions on either side of the
JJ35, we use Josephson’s equations

IJJ(t) = Icr sinϕ(t), (20a)

UJJ(t) =
~
2e
∂tϕ(t). (20b)

Hence, from (18) and (19), we obtain

Iring(t) =
C~
2e
∂2
t ϕ(t) +

~
2eR

∂tϕ(t) + Icr sinϕ(t),

(21a)

~
2e
∂tϕ(t) = −∂tΦring(t). (21b)

Yet another macroscopic quantum effect has to be taken
into account, namely the flux quantization in a super-
conducting loop. If we consider a superconducting de-
vice containing a hole, which is completely surrounded by
superconducting material, this effect occurs36. We state
the general expression of the momentum of a Cooper pair
inside a superconductor14

~~∇θ(~r, t) = 2me~vq(~r, t) + 2e ~A(~r, t), (22)

where ~vq denotes the velocity of the Cooper pairs and ~A

is the magnetic vector potential, that obeys ~B = ~∇× ~A.
The right-hand side of (22) is the generalized momentum
of a particle with mass m = 2me and charge q = 2e in
an electromagnetic field. The left-hand side is generated
when applying the momentum operator to the general
expression of a condensate’s wave function in real space
Ψ(~r, t) =

√
neiθ(~r,t) with position-independent density

distribution n. We integrate (22) along a path deep inside
the interior of a superconducting ring. The path is chosen
such that the distance from the path to the surface of the

Figure 1: Illustration of an rf-SQUID ring with a JJ.
The red curve in (a) coincides with the integration path
of the left-hand side of (22). (b) shows the equivalent

circuit diagram.

ring is everywhere larger than the penetration depth λ
of the electromagnetic field into the ring. The phase θ
of the superconducting wave function is not continuous
along the path, but the vector potential is. On the left-
hand side of (22) we evaluate an integration along an
open circle from one edge of the JJ to the other, see the
red directed path in Fig. 1(a). If the points 1 and 2 are
very close to each other, we make a negligible error, when
we integrate the right-hand side instead over a closed
circle, since all of the involved quantities are continuously
integrable. By Stokes’ theorem, we obtain

~
∫ 2

1

~∇θ(~r, t)d~l =2e

∮
∂F

~A(~r, t) · d~l

+ 2me

∮
∂F

~vq(~r, t) · d~l, (23a)

θ2(t)− θ1(t) =
2e

~

∫
F

~B(~r, t) · d~F

+
2me

~

∫ 1

2

~vq(~r, t) · d~l. (23b)

On the right-hand side, the integral over ~vq only runs
from 2 to 1, because along the path 1 to 2, deep inside
the superconductor, the current is located at the surface

of the ring and ~vq(~r, t) · d~l = 0 holds. However, the JJ
constitutes a fraction of the ring within which a current
has to be considered inside the integration path. With
~jq(~r, t) = nq~vq(~r, t), (23b) transforms to

ϕ(t) = 2π
Φ(t)

Φ0
+

2me

~nq

∫ 1

2

~jq(~r, t) · d~l, (24a)

Φ0

2π
ϕ(t) = Φ(t) +

Φ0

2π
· 2me

~nq

∫ 1

2

~jq(~r, t) · d~l︸ ︷︷ ︸
screening current L·Iring(t)

, (24b)

where ϕ(t) := θ2(t) − θ1(t) and Φ0 = ~/2e is the flux
quantum. Furthermore, Φ(t) is the externally applied
magnetic flux via a magnetic field. We can see that the
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total flux Φring(t), that is enclosed in the ring, consists of
the externally applied flux Φ(t) = Φext(t) and an addi-
tional term that describes a screening current Iring in the
ring. Its role is to force the enclosed flux onto an integer
multiple value of the flux quantum Φ0. Equation (24b)
can be reformulated to

Φring(t) = Φext(t) + LIring(t). (25)

For the sake of brevity and comprehensible readability,
we drop the spatial and temporal dependencies from now
on, whenever the situation is unambiguous. In the case of
the interaction of an electromagnetic wave with the rings,
the external flux penetrating the rings’ enclosed surface
is provided by the magnetic component of the wave, i.e.,

Φext(t) = µ0

∮
F

( ~H(z = 0, t) · ~n)dF. (26)

Hence, we arrive at

C~
2e
∂2
t ϕ+

~
2eR

∂tϕ+ Icr sinϕ+
Φ0

2πL
ϕ = −µ0A

L
~H(0) · ~n.

(27)

Equation (27) is a nonlinear oscillator ϕ(t), that is driven

by the magnetic field vector ~H(z = 0, t) at the position
of the film. Equation (17) describes the back-action of
the current in the film on the magnetic field via the jump
condition of its first spatial derivative. We know that ac-
celerated charges send out radiation, such that the cur-
rent can be regarded as the source of the electromagnetic

field ~H(~r, t). Equations (17) and (27) constitute the cen-
tral equations of the interaction model.

D. Normalization of the model

To investigate their mathematical structure, we boil
(17) and (27) down to dimensionless equations by intro-
ducing

ω̃ :=
1√
LC

, λ̃ :=
c

ω̃
= c
√
LC,

~h(~r, t) := 2π
µ0A

Φ0

~H(~r, t), α :=
1

R

√
L

C
,

β := 2π
LIcr

Φ0
, κ := 2µ0cA

√
C

L
.

We use both dimensionless time τ := ω̃t and space ξ :=
z/λ̃ variables, where ω̃ defines a characteristic time scale

of the oscillator and λ̃ a characteristic length scale of
the system. Inserting the above relations, (17) and (27)
transform to the dimensionless expressions(

∂2
τ − ∂2

ξ

)
~h = 0, (28a)

∂ξ~h
+(0)− ∂ξ~h−(0) = κ~n

(
~h(0) · ~n+ ϕ

)
, (28b)

∂2
τϕ+ α∂τϕ+ β sinϕ+ ϕ = −~h(0) · ~n. (28c)

For the sake of simplicity, we will now rename the spatial
and temporal coordinates back to the original ones and
write τ → t and ξ → z, both still being dimensionless,
i.e., (

∂2
t − ∂2

z

)
~h = 0, (29a)

∂z~h
+(0)− ∂z~h−(0) = κ~n

(
~h(0) · ~n+ ϕ

)
(29b)

∂2
t ϕ+ α∂tϕ+ β sinϕ+ ϕ = −~h(0) · ~n. (29c)

After the physical model of the dynamics in the system
has been derived, we now discuss the wellposedness of the
problem from a mathematical point of view. This offers
a clear indication that the derived system of equations is
reasonable.

II. WELLPOSEDNESS

We now show that (29) together with initial conditions

~h(0) = ~h0, ∂t~h(0) = ~ht,0, on R,
ϕ(0) = ϕ0, ∂tϕ(0) = ϕt,0,

(30)

has a unique solution ~h : [0, T ]→ H1(R)3 ∩H2(R\{0})3

and ϕ : [0, T ] → R, where Hk(R) denotes the Sobolev
space of order k ∈ N.

We prove wellposedness of (29) with (30) using Ref. 37.
To keep notation short, we introduce the spaces

X = L2(R)3 × R, V = H1(R)3 × R

equipped with the respective standard norms. Using the

short notation u = (~uh, uϕ) = (~h, ϕ), u0 = (~h0, ϕ0) and

ut,0 = (~ht,0, ϕt,0), we derive the weak form
Find u : [0, T ]→ V , such that for all w ∈ V
m(∂2

t u,w) + b(∂tu,w) + a(u,w) = m(f(u), w),

u(0) = u0, ∂tu(0) = ut,0,

(31)

where m : X ×X → R, a, b : V × V → R and f : V → X
are defined by

m(w, v) =

∫
R3

~wh~vh dx+ κwϕvϕ,

b(w, v) = καwϕvϕ,

a(w, v) =

∫
R3

∇~wh∇~vh dx

+ κ(~wh(0) · ~n+ wϕ)(~vh(0) · ~n+ vϕ),

f(w) =

(
0

−β sinwϕ

)
.

Since κ > 0, m is an inner product for X. Moreover b is
positive semidefinite and continuous with

b(w,w) ≥ 0, b(w, v) ≤ κα‖w‖V ‖v‖V , w, v ∈ V.
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Furthermore, by Gauss’s theorem a is continuous. It is
also symmetric and satisfies a Garding inequality, i.e.,

a(w, v) ≤ C‖w‖V ‖v‖V , w, v ∈ V,
a(w,w) + cGm(w,w) ≥ cG‖w‖2V , w ∈ V

for all cG > max{1, κ−1}. Finally the right-hand side f
is Lipschitz continuous with constant κβ, i.e.,

‖f(w)− f(v)‖X ≤ κβ‖w − v‖V , w, v ∈ V.

Therefore, Theorem 3.3 in Ref. 37 yields the existence of
a unique solution u ∈ C2(0, T ;X) ∩ C1(0, T ;V ) of (29)
with (30) for initial values u0 ∈

(
H2(R3 \S) × R

)
∩ V

satisfying the jump condition (29b) and ut,0 ∈ V .
We want to emphasize that an analogous proof holds

true without the assumption of the film being transla-

tionally invariant with respect to the x-y-plane, i.e., ~h
and ϕ being also functions of x and y. This situation is
relevant if the metasurface shall show a position depen-
dent response to encode further functionalities.

III. ANALYTICAL TREATMENT IN LINEAR
APPROXIMATION

First, we consider a special case of (29) and calculate
reflection and transmission from the film in the linear
regime. As the one-dimensional case suffices to describe
the reflection and transmission coefficients of the film,
we continue to assume that the film is placed in the x-y-
plane. We further assume the electromagnetic field and
the film to be translationally invariant with respect to the
x-y-plane and calculate the reflection and transmission
coefficient of an incident plane wave that is y-polarized
with its magnetic field.

We make a small-amplitude ansatz to linearize the dif-
ferential equations

~h(z, t) = ~hs + δ~h(z, t), (32a)

ϕ(t) = ϕs + δϕ(t), (32b)

where ~hs and ϕs are the static components of the mag-
netic field and the phase difference. For ϕs = 0, we
obtain (

∂2
t + α∂t + ω2

0

)
δϕ = −δ~h(0) · ~n, (33)

where we used ω0 =
√

1 + β. Analogously to the calcula-
tions in Ref. 32, we proceed with a time-harmonic ansatz
to investigate the model in frequency space

δ~h(z, t) =

∫
dω ~f(z, ω) exp (−iωt) , (34a)

δϕ(t) =

∫
dωφ(ω) exp (−iωt) . (34b)

Equation (33) yields(
ω2 + iαω − ω2

0

)
φ(ω) = ~f(0, ω) · ~n. (35)

Figure 2: Graphical illustration of the ansatz for the
magnetic field amplitudes in (38).

We can plug φ(ω) from (35) into the jump condition (29b)
and as a result we eliminate one equation, i.e.,

∂z ~f
+(0, ω)− ∂z ~f−(0, ω) = −κ~n

(
~f(0, ω) · ~n

)
M(ω),

(36)

where we defined

M(ω) =
ω2 + iαω − β
ω2

0 − ω2 − iαω
=

1

ω2
0 − ω2 − iαω

− 1. (37)

A. Reflection and transmission coefficients

For the spatial dependence of the magnetic field, we
also make a harmonic ansatz in the two half-spaces z < 0
and z > 0 and impose continuity of the magnetic field at
the position of the film z = 0, see Fig. 2, i.e.,

~f(z, ω) =

{
~fin(ω)eiωz + ~fref(ω)e−iωz if z < 0,
~ftrans(ω)eiωz if z > 0,

(38)

~fin(ω) + ~fref(ω) = ~ftrans(ω) at z = 0. (39)

Note that due to the normalization of the model and the
propagation direction of the electromagnetic wave along

the z-axis, it holds ω(~k) = kz. From (36) and using the
ansatz in (38), we find

~ftrans(ω)− ~fin(ω) + ~fref(ω) =
iκ

ω
~n(~f(0, ω) · ~n)M(ω).

(40)

Using (39) as well, we obtain

~fref(ω) =
iκ

2ω
M(ω)~n(~ftrans(ω) · ~n), (41a)

~ftrans(ω) = ~fin(ω) +
iκ

2ω
M(ω)~n(~ftrans(ω) · ~n). (41b)

Our goal is to express both the reflected wave ~fref and

the transmitted wave ~ftrans through the incoming wave
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~fin only. On that account, we project (41b) onto ~n and
obtain

~ftrans(ω) · ~n =
~fin(ω) · ~n

1− iκ
2ωM(ω)

. (42)

As desired, using (42), we can write (41a) and (41b) as

functions of the incoming field amplitude ~fin only. We
obtain

~fref(ω) = i
κM(ω)

2ω − iκM(ω)
(~fin(ω) · ~n)~n, (43)

~ftrans(ω) = ~fin(ω) + i
κM(ω)

2ω − iκM(ω)
(~fin(ω) · ~n)~n. (44)

For the following, we make assumptions concerning the
geometry of the problem. Assuming, that θ is the incli-
nation angle of the ring’s normal vector ~n with respect to

the incoming field amplitude ~fin, i.e., ~fin · ~n = |~fin| cos θ,
we find the reflection coefficient R(ω, θ) and the trans-
mission coefficient T (ω, θ) according to

R(ω, θ) : =
|~fref(ω)|2

|~fin(ω)|2
=

κ2

4ω2
· |M(ω)|2

CD(ω)
cos2 θ, (45a)

T (ω, θ) : =
|~ftrans(ω)|2

|~fin(ω)|2

= 1−R(ω, θ)− κ

ω
· Im(M(ω))

CD(ω)
cos2 θ, (45b)

where we defined the ”common denominator” as

CD(ω) = 1 +
κ2

4ω2
|M(ω)|2 +

κ

ω
Im(M(ω)). (46)

Since the absorption function A(ω, θ) has to fulfill the
energy conservation relation A + R + T = 1, we find by
comparison

A(ω, θ) =
κ

ω
· Im(M(ω))

CD(ω)
cos2 θ. (47)

For θ = 0, Fig. 3 shows the reflection and transmission
coefficients, as well as the absorption function for the
two cases β = 0 (a) and β = 1 (b). Both cases show the
resonance at the resonance frequency ω0 =

√
1 + β of

the rings. However, for a notably large current through
the Josephson junction (β > 0), in the DC limit the
film acts as a reflector. This can be explained taking
into account self-induction of the rf-SQUID ring loop for
small frequencies.

IV. SIMULATIONS IN THE NONLINEAR
INTERACTION REGIME

Up to this point, the effects have been computed an-
alytically in the linear interaction regime after having
performed linear approximations in (32). We next con-
sider nonlinear effects by numerical simulations. As soon

as the amplitude of the incoming magnetic field ~hinc ex-
ceeds a critical value, the trigonometric expressions in
the equations of motion of our model can no longer be
replaced by the linear term of their Taylor expansion.

A. Wellposedness on a bounded domain

In order to introduce a spatial discretization, we re-
strict the computational domain to a bounded subdo-
main Ω` := [`1, `2] ⊂ R for some `1 < 0 < `2. This
leads to the following simplified model problem, where

the magnetic field ~h and the phase ϕ satisfy

(∂2
t − ∂2

z )~h = 0, [0, T ]× Ω` \ {0}, (48a)

∂2
t ϕ+ α∂tϕ+ ϕ+ β sinϕ = −~h(0) · ~n, [0, T ], (48b)

together with the jump condition at the interface z = 0

κ~n (h(0) · ~n+ ϕ) = ∂z~h
+(0)−∂z~h−(0), [0, T ]. (48c)

Following the approach of Ref. 38, we introduce exact
transparent boundary conditions

∂z~h(`1) = ∂t~h(`1), ∂z~h(`2) = −∂t~h(`2), [0, T ]. (48d)

With these boundary conditions, the solution of the re-
duced system coincides with the restriction to the domain
Ω` of the solution of the original system (29) with (30)

if the support of both ~h0 and ~ht,0 is contained in Ω`.
Therefore, the reduced system yields the same reflection
and transmission coefficients as the problem considered
on the full space. Finally, we impose again the initial
conditions (30), but with Ω` instead of R. The well-
posedness of the reduced system is shown analogously to
the approach for the general setting. First we introduce
the spaces

X1 = L2(Ω`)
3 × R, V1 = H1(Ω`)

3 × R (49)

R(ω, 0) T (ω, 0) A(ω, 0)

0 ω0 = 1 2
0

0.2

0.4

0.6

0.8

1

ω

(a)

0 1 ω0 2
0

0.2

0.4

0.6

0.8

1

ω

(b)

Figure 3: Reflection and transmission coefficients, and
absorption functions for β = 0 (a) and β = 1 (b). We

chose α = 0.1, κ = 1.
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equipped with the standard norms. The bilinear forms
m : X1×X1 → R, a : V1×V1 → R and the right-hand side
f : V1 → X1 are defined as before, but with Ω` instead
of R. Only the bilinear form b : V1 × V1 → R changes
significantly:

b(w, v) =καwϕvϕ+ ~wh(`1)~vh(`1) + ~wh(`2)~vh(`2),

but as all bilinear forms and the right-hand side have
the same properties as before, Theorem 3.3 in Ref. 37
again yields the existence of a unique solution u ∈
C2(0, T ;X1) ∩ C1(0, T ;V1) of (48).

B. Space discretization

We discretize in space using finite elements on a grid

Ω̂` of Ω`. In order to resolve the jump condition (48c)
correctly, we require 0 to be a grid point. We denote the

maximal length of the intervals in Ω̂` by h. We further

introduce the space Pk(Ω̂`), consisting of piecewise poly-

nomials of degree at most k ∈ N in every interval in Ω̂`,

and the space V̂ := Pk(Ω̂`)
3 × R.

Find û ∈ C1(0, T ; V̂ ), such that for all v̂ ∈ V̂
m̂(∂2

t û, v̂)+b(∂tû, v̂)

+ â(û, v̂) = m̂(f(û), v̂),

û(0) = û0, ∂tû(0) = ût,0,

(50)

where the initial values û0 and ût,0 discrete versions
of their continuous counterparts. The discrete bilinear

forms m̂, â : V̂ × V̂ → R are approximations of m and a,
where the integrals are replaced by a quadrature rule of
order at least k2. Therefore, the discrete bilinear forms

coincide with their continuous counterparts on V̂ × V̂ .
Hence, they satisfy the same assumptions and we get
from Theorem 3.6 in Ref. 37 the following semi-discrete
error estimate.

Theorem (semi-discrete error estimate): For the ex-
act solution u = (~uh, uϕ)T ∈ C2(0, T ;W k,2(Ω`) × R) ∩
C1(0, T ;W k+1,2(Ω`)×R) of the continuous problem and

the discrete solution û ∈ C2(0, T ; V̂ ) of (50), the follow-
ing estimate holds for all t ∈ [0, T ]

‖û(t)− u(t)‖V1
+ ‖∂tû(t)− ∂tu(t)‖X1

≤ Ce( 1
2 +κβ)t(1 + t)

(
‖û0 − u0‖V1

+ ‖ût,0 − ut,0‖X1

hk
(
‖~uh‖∞,k+1 + ‖∂t~uh‖∞,k+1 + ‖∂2

t ~uh‖∞,k
))
. (51)

C. Full discretization

We use the Crank-Nicolson scheme for the time dis-
cretization of (50). First, we define Â, B̂ : V̂ → V̂ via

m̂(Âû, v̂) = â(û, v), m̂(B̂û, v̂) = b(û, v̂)

for all û, v̂ ∈ V̂ . The Crank-Nicolson scheme with time
step τ is then given by(

ûn+1

ûn+1
t

)
=

(
ûn

ûnt

)
− τ

2

(
0 −I
Â B̂

)((
ûn+1

ûn+1
t

)
+

(
ûn

ûnt

))
+
τ

2

(
0

f(ûn+1) + f(ûn)

)
.

(52)

From Corollary 3.7 in Ref. 37 we get the following result.
Theorem (fully discrete error estimate): For the exact

solution u = (~uh, uϕ)T ∈ C4(0, T ;X1) ∩ C3(0, T ;V1) and

the numerical approximation ûn ∈ V̂ obtained by the
Crank-Nicolson scheme (52), the following error estimate
holds for all tn = nτ ≤ T

en = ‖ûn − u(tn)‖V1
+ ‖ûnt − ∂tu(tn)‖X1

≤ Ce( 1
2 + κβ

1−κβτ )tn(1 + tn)
(
‖û0 − u0‖V1

+ ‖ût,0 − ut,0‖X1
+ τ2

(
‖∂3
t u‖∞,V1

+ ‖∂4
t u‖∞,X1

)
+ hk

(
‖~uh‖∞,k+1 + ‖∂t~uh‖∞,k+1 + ‖∂2

t ~uh‖∞,k
))
.

D. Validation

In Fig. 4(a), the error estimate (51) is numerically con-
firmed for α = 0, β = 3, κ = 1 and k = 1. For the initial
values, we chose a Gaussian-modulated sinusoidal pulse
of the form

û0(z) =

(
− exp

(
−400(z + 1

2 )2
)

sin
(
5(z + 1

2 )
)
êy

0

)
,

ût,0(z) =
d

dz
û0(z).

for z ∈ [− 1
2 ,

1
32 ] = Ω̂`. Since the exact solution is un-

known, we computed a reference solution on a finer grid.
As predicted, we see linear convergence in the spatial
resolution for the error measured in the energy norm.

Since it is not possible to have any inflow with the
boundary conditions (48d), the support of the initial val-
ues yields a lower bound for the size of the spatial do-
main. However, for the reflection and transmission co-
efficients it is sufficient to know the magnetic field at
any pair of points ε1 < 0 < ε2 arbitrarily close to the
film, i.e., −ε1, ε2 � 1. Therefore, we adapt the bound-
ary condition at `1 in order to allow an incident wave
~hin : [0, T ] → R entering the computational domain Ω`
from the left side. Using d’Alembert’s formula, ~hin is

uniquely defined by the initial values ~h0 and ~ht,0. So
in the following, we replace (48d) by the new boundary
conditions

∂z~h(`1) = ∂t~h(`1)− 2∂t~hin, [0, T ],

∂z~h(`2) = −∂t~h(`2), [0, T ].
(53)

Although not covered by our analysis, numerical exper-
iments also show first order convergence, as can be seen
in Fig. 4(b).



9

The benefit of these boundary conditions is the pos-
sibility to drastically reduce the computational domain.

In fact, the choice −`1 = `2 = h means that the grid Ω̂`
contains only the two intervals (−h, 0) and (0, h). There-
fore, the numerical effort for the spatial discretization is
completely independent of the spatial resolution.

As the Crank-Nicolson scheme is unconditionally sta-
ble, one can even keep the number of time steps con-
stant. Therefore, there is no dependency between spatial
resolution and the computational effort. So the maximal
computable spatial resolution is solely restricted by the
machine epsilon, as the condition number of the resolvent(
I − τ2 I
τ
2 Â I + τ

2 B̂

)
is growing proportionally to h−2.

E. Simulation results

To investigate the nonlinear effects, we increase the
amplitude of the incoming light’s magnetic field compo-
nent and observe the excited phase difference ϕ as well as
the reflected and transmitted field amplitude. We apply
two qualitatively different types of sources in the simula-
tion setup.

1. One option is to sweep the amplitude hinc of the
incoming magnetic field at a fixed driving frequency
ω(t) = ωD. The corresponding magnetic field for
t ∈ [0, T ] has the form

~hinc(z, t) = hinc(t)e−iωD(t−z)êy, (54)

hinc(t) =
hinc,max − hinc,min

T
· t+ hinc,min, (55)

where hinc,min is still part of the linear interaction
regime, but hinc,max is not.

2. Another way to observe nonlinear effects is to sweep
the frequency of the incoming light at fixed ampli-
tude. In the linear interaction regime, the system

10−3 10−2

10−2

10−1

100

h

en

(a)

10−6 10−4 10−2

10−6

10−3

100

h

en

(b)

Figure 4: Error against spatial resolution h.
(a): with b.c. (48d) (no inflow, fixed domain)

(b): with b.c. (53) (with inflow, domain (−h, h))
dashed line indicates first order in h
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|

(a) stationary state amplitude

1.36 1.38 1.4

0.2

0.4

0.6

0.8

1

hinc

h
re

f

(b) reflected magnetic field
amplitude

1.36 1.38 1.4

0.8

1

1.2

hinc

h
tr
a
n
s

(c) transmitted magnetic field
amplitude

Figure 5: Stationary state amplitude of ϕ (a), reflected
magnetic field amplitude (b) and transmitted magnetic

field amplitude (c) against incoming magnetic field
amplitude hinc for α = 0.1, β = 1.5 and ωD = 1.14.

provides its maximum amplitude response of ϕ at
resonance frequency ωD = ω0. This is not neces-
sarily the case, when we go to the nonlinear in-
teraction regime. When we perform a frequency
sweep of the incoming light at fixed amplitude, the
incoming magnetic field will be of the form

~hinc(z, t) = hince
−iω(t)(t−z)êy, (56)

ω(t) =
ωmax − ωmin

T
· t+ ωmin. (57)

We will choose the setting in such a way, that at
some time, the incoming field is in resonance with
the structure, i.e., ωmin < ω0 < ωmax holds.

Figure 5(a) shows simulation results of the first kind,
applying a source term according to (55) to an rf-SQUID
with parameters α = 0.1 and β = 1.5. One can see the
amplitude of the stationary state oscillation of ϕ, belong-
ing to different incident plane wave amplitudes. The blue
triangles pointing to the right indicate dynamic param-
eter sweep simulation results from small amplitudes up-
wards towards larger ones. Vice versa, the red triangles
pointing to the left indicate dynamic sweep simulation re-
sults from large amplitudes downwards towards smaller
ones. One can observe, that in a certain range of am-
plitudes the curves do not coincide. The hysteresis loop
that occurs for ϕ can also be observed in the reflected
and transmitted field amplitudes, see Fig. 5(b)-(c). In
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(a) stationary state amplitude
for hinc = 10−3
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Figure 6: For hinc = 10−3: stationary state amplitude
of ϕ for (a). For hinc = 1.2: stationary state amplitude
of ϕ (b), reflected field amplitude (c) and transmitted

field amplitude (d). All plotted against the frequency ω
for α = 0.1, β = 2.5.

a certain bistable region, the amplitudes of the reflected
and transmitted waves, respectively, do not only depend
on the amplitude of the incident plane wave, but also on
the direction this amplitude value has been approached
from.

We further apply a plane wave source according to
(57), i.e., we keep the amplitude of the incident plane
wave fixed throughout the entire simulation and sweep
its driving frequency ωD over a frequency range, which
contains the resonance frequency ω0 =

√
1 + β. The

results are shown in Fig. 6(b)-(d). The resonance
frequency is indicated by the vertical black dashed lines.
In Fig. 6(a), hinc = 10−3 is in the linear interaction
regime. The other three figures are plots of a simulation
done at hinc = 1.2, when nonlinear effects already play
a role. The damping parameter is chosen to be α = 0.1
and the SQUID parameter is β = 2.5. The sweeps
were done first from ωmin = 1.3 to ωmax = 2.1 in an
increasing way (blue triangles pointing to the right),
afterwards vice versa in a decreasing way (red triangles
pointing to the left). The response of the system is

different in either case, exhibiting the manifestations of
the nonlinear terms in the equations of motion. We can
observe that the resonance of both the phase difference
ϕ and the reflected wave href are shifted to smaller
frequencies. Compare this observation to the Duffing
oscillator, which takes into account the cubic term in
the sin-expansion as well39,40. Hence, the minimum
of the transmitted wave amplitude occurs at smaller
frequencies than in the linear case as well. Thus, one
can tune the effective resonance frequency of the entire
system by increasing the amplitude of the incoming
magnetic field amplitude hinc to smaller frequencies.

V. CONCLUSION

We have derived an interaction model of an rf-SQUID
loaded infinitesimally thin film with electromagnetic
waves. In a strictly mathematical treatment, we showed
that our problem is wellposed. Therefore, a unique solu-
tion of the system of coupled differential equations exists.

We have treated the model in the linear small-
amplitude interaction regime analytically. In this limit,
we derived analytical expressions for the reflection and
transmission coefficients of the film as well as for the ab-
sorption function.

To investigate nonlinear effects, we proposed a numer-
ical scheme based on the finite element method and the
Crank-Nicolson scheme. We further showed rigorous er-
ror estimates and presented a numerical scheme based on
transparent boundary conditions with inflow, where the
computational effort is independent of the spatial resolu-
tion. With these methods, we simulated the dynamics in
the system numerically and found bistable and hysteretic
behavior in the nonlinear interaction regime.

In future work, interaction between the rf-SQUIDs in-
side the film has to be taken into account. It has been
proposed already to assume an interaction via mutual in-
ductance between the rings41–43. Moreover, one has to
investigate, if the coupling of the electric component of
the wave to the rf-SQUID is relevant in the description
of the interaction.
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