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A model for the periodic water wave problem
and its long wave amplitude equations

Roman Bauer, Patrick Cummings and Guido Schneider

Abstract. We are interested in the validity of the KdV and of the long wave
NLS approximation for the water wave problem over a periodic bottom. Ap-
proximation estimates are non-trivial, since solutions of order O(ε2), resp.
O(ε), have to be controlled on an O(1/ε3), resp. O(1/ε2), time scale. In
contrast to the spatially homogeneous case, in the periodic case new qua-
dratic resonances occur and make a more involved analysis necessary. For a
phenomenological model we present some results and explain the underlying
ideas. The focus is on results which are robust in the sense that they hold un-
der very weak non-resonance conditions without a detailed discussion of the
resonances. This robustness is achieved by working in spaces of analytic func-
tions. We explain that, if analyticity is dropped, the KdV and the long wave
NLS approximation make wrong predictions in case of unstable resonances
and suitably chosen periodic boundary conditions. Finally we outline, how,
we think, the presented ideas can be transferred to the water wave problem.

Mathematics Subject Classification (2000). Primary 76B15; Secondary 35Q53,
35Q55.

Keywords. KdV approximation, NLS approximation, error estimates.

1. Introduction

The water wave problem with a free surface Γ(t) = {y = η(x, t) : x ∈ R} over an
L-periodic bottom B = {y = b(x) : b(x) = b(x + L), x ∈ R} is governed by the
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through the SFB 1173 ”Wave phenomena”.
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system of nonlinear PDEs

∂2
xφ+ ∂2

yφ = 0, in Ω(t),

∂~nφ = 0, on B,
∂tη = ∂yφ− (∂xη)∂xφ, on Γ(t),

∂tφ = −1

2
((∂xφ)2 + (∂yφ)2) + µ∂x

(
∂xη√

1 + (∂xη)2

)
− η, on Γ(t),

for the flow potential φ and the elevation of the top surface η, where Ω(t) = {(x, y) :
b(x) < y < η(x, t)}, and where µ ≥ 0 is the surface tension parameter. It is well
known that the water wave problem is completely described by the elevation η of
the top surface and the horizontal velocity w = ∂xφ|Γ at the top surface Γ(t).

Γ(t)

Ω(t)

B

Figure 1. The water wave problem over a periodic bottom

We are interested in the qualitative behavior of the solutions:

• The linearized problem is solved by Bloch modes(
η
w

)
= eilxfn(l, x)iωn(l)t,

with n ∈ Z/{0}, fn(l, x) = fn(l, x + L) ∈ C2 and l ∈
[
− π
L ,

π
L

]
. Curves

of eigenvalues ωn(l) are sketched in Figure 2. They are ordered as ωn(l) ≤
ωn+1(l) with ω−n(l) = −ωn(l). Due to the periodicity of the bottom, spectral
gaps can occur.
• With the ansatz (

η
w

)
= ε2A(ε(x− ct), ε3t)f1(0, x) (1.1)

a KdV equation
∂TA = ν1∂

3
XA+ ν2∂X(A2), (1.2)

can be derived, with amplitude A(X,T ) ∈ R, with group velocity c ∈ R, with
0 < ε� 1 a small perturbation parameter, and with coefficients ν1, ν2 ∈ R.
• With the ansatz(

η
w

)
= εA(ε(x− ct), ε2t)fn(0, x)eiωn(0)t + c.c. (n 6= ±1) (1.3)
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Figure 2. The panels show the curves of eigenvalues l 7→
ωn(l), n ∈ Z/{0} of the linearized water wave problem. The left
panel shows the curves of eigenvalues in the homogeneous case,
i.e., b(x) = const., in case of positive surface tension. For L = 2π
the dispersion relation ω2 = (k + µk3) tanh(k) in Fourier space
transfers to Bloch space by setting k = n+ l with n ∈ Z. In case
of periodic bottom, spectral gaps, such as sketched in the right
panel, can occur. The modes in the blue circle can be described
by a KdV approximation. The modes in the red circle can be
described by an NLS approximation.

an NLS equation

i∂TA = ν1∂
2
XA+ ν2A |A|2 , (1.4)

can be derived, with amplitude A(X,T ) ∈ C, with group velocity c ∈ R, with
0 < ε� 1 a small perturbation parameter, and with coefficients ν1, ν2 ∈ R.

Our goal is to prove error estimates between these approximations and true
solutions of the water wave problem. Such estimates are a nontrivial task since
for the KdV approximation we have to control solutions of order O(ε2) on an
O(1/ε3)-time scale, and for the NLS approximation we have to control solutions
of order O(ε) on an O(1/ε2)-time scale.

A) In the homogeneous case, b(x) = −1, there are two fundamentally different
approaches to prove KdV approximation results. For solutions to the KdV equation
with analytic initial conditions a Cauchy-Kowalevskaya based approach can be
chosen, see [14, 17]. Working in spaces of analytic functions gives some artificial
smoothing which allows to gain the above explained missing order w.r.t. ε via the
derivative in front of the nonlinear terms in the KdV equation. This ’analytic’
approach is very robust and works without a detailed analysis of the underlying
problem, but gives not optimal results.
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For initial conditions in Sobolev spaces the underlying idea to gain such
estimates is conceptually rather simple, namely the construction of a suitable
chosen energy which include the terms of order O(ε2) in the equation for the error,
such that for the energy finally O(ε3t) growth rates occur. However, the method is
less robust since for every single original system a different energy occurs and the
major difficulty is the construction of this energy. Estimates that the formal KdV
approximation and true solutions of the different formulations of the homogeneous
water wave problem stay close together over the natural KdV time scale have been
shown for instance in [7, 21, 22, 8] by using this approach.

B) The NLS approximation has been justified in various papers for a number
of original systems, cf. [13, 15, 18]. If no quadratic terms are present in the original
system a simple application of Gronwall’s inequality allows to prove the validity
of the NLS approximation. Quadratic terms can be eliminated by a near identity
change of variables, if a non-resonance condition is satisfied. This non resonance
condition has been weakened in a number of papers, cf. [19]. The NLS approxima-
tion has been justified for the water wave problem in case of infinite depth and no
surface tension [24, 23], and in case of finite depth and no surface tension [10].

A+B) KdV approximation results in the spatially periodic case are only
known for small perturbations of a flat bottom, cf. [3, 12, 4]. An NLS approximation
result in a periodic medium has been obtained in [2]. However, due to ω1(0) = 0
in the spectral picture plotted in Figure 2 the approach from [2] does not transfer
to the situation we are interested in.

It is the purpose of this paper to present for a phenomenological model, which
has similar properties as the water wave problem, some approximation results and
the underlying ideas of their proofs. One focus is on results which are robust in
the sense that they hold under very weak non-resonance conditions without a
detailed discussion of the resonances. This robustness is achieved by working in
spaces of analytic functions. We explain that, if analyticity is dropped, the KdV
approximation and the long wave NLS approximation make wrong predictions in
case of unstable resonances. Finally we outline how, we think, the presented ideas
can be transferred to the water wave problem.

2. The Boussinesq Klein-Gordon model

The model, which we consider, is a Boussinesq equation coupled with a Klein-
Gordon equation, in the following called BKG system, namely

∂2
t u = α2∂2

xu+ ∂2
t ∂

2
xu+ ∂2

x(auuu
2 + 2auvuv + avvv

2), (2.1)

∂2
t v = ∂2

xv − v + buuu
2 + 2buvuv + bvvv

2, (2.2)

where u = u(x, t), v = v(x, t), x, t ∈ R, and coefficients α > 0, auu, . . . , bvv ∈ R.
The curves of eigenvalues are given by

ωu(k) =
αk√

1 + k2
and ωv(k) =

√
1 + k2. (2.3)
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Hence the spectral picture of the water wave problem over a periodic bottom,
which is qualitatively sketched in the right panel of Figure 2, and of the BKG
system, see Figure 3, look qualitatively the same. Moreover, in both systems the
nonlinear terms vanish for modes associated to ω±1, resp. ωu, at the wave numbers
l = 0, resp. k = 0.

k��
����
��

ωu

ωv

k��
����
��

ωu

ωv

Figure 3. The curves of eigenvalues ±ωu, ±ωv for the linearized
BKG system plotted as a function over the Fourier wave numbers
in case α2 = 1 (left) and α2 = 5 (right). The modes in the blue
circles are described by the KdV approximation. The modes in
the red circles are described by the NLS approximation.

Inserting the ansatz

ε2ψKdV
u (x, t) = ε2A(ε(x− αt), ε3t) and ε2ψKdV

v = 0 (2.4)

into (2.1)-(2.2) yields the KdV equation

∂TA = ν1∂
3
XA+ ν2∂X(A2), (2.5)

with coefficients ν1, ν2 ∈ R, the long temporal variable T = ε3t, and the long
spatial variable X = ε(x− αt).

Inserting the ansatz

εψNLS
u (x, t) = O(ε2) and εψNLS

v = εA(εx, ε2t)eit + c.c.+O(ε2) (2.6)

into (2.1)-(2.2) yields the NLS equation

i∂TA = ν1∂
2
XA+ |A|2A = 0, (2.7)

with coefficients ν1, ν2 ∈ R, the long temporal variable T = ε2t, and the long
spatial variable X = εx. The ansatz is called long wave NLS approximation since
we have k0 = 0 for the wave number of the underlying carrier wave ei(k0x+ω0t).

We are interested in the validity of the KdV approximation and long wave
NLS approximation for the BKG system. For this phenomenological model we
present some approximation results and explain the underlying ideas. Approxi-
mation estimates are non-trivial, since solutions of order O(ε2), resp. O(ε), have
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to be controlled on an O(1/ε3), resp. O(1/ε2), time scale. That these approxima-
tion results are really subtle is explained in the next section when the resonance
structure of the problem is discussed.

3. The resonance structure

The BKG system is written as

∂tU = ΛU +N(U,U),

where ΛU stands for the linear terms and where the nonlinear terms are repre-
sented by the symmetric bilinear mapping N(U,U).

3.1. Resonances in the KdV case

The error εβR = U − ε2ψKdV made by the KdV approximation ε2ψKdV satisfies

∂tR = ΛR+ 2ε2N(ψKdV, R) +O(ε3),

were O(ε3) contains the nonlinear terms w.r.t. R and the residual terms, i.e., the
terms which do not cancel after inserting the KdV approximation into the BKG
system. In order to obtain O(ε3) for the residual terms in this equation, higher
order terms have to be added to the KdV approximation ε2ψKdV. This is standard
and so we will concentrate on other aspects. Due to the term 2ε2N(ψKdV, R) a sim-
ple application of Gronwall’s inequality is not sufficient to obtain an O(1)-bound
for R on the long O(1/ε3)-time scale. The difficulty can be overcome by normal
form transformations and energy estimates. In this section we will concentrate on
the normal form transformations, i.e., near identity change of variables, and the
resonances which prevent the elimination of the quadratic terms by normal form
transformations. A term ψKdVRj can be eliminated in the i-th equation with a
near identity change of variables

Ri = R̃i + ε2M(ψKdV, R̃j),

with M a suitably chosen bilinear mapping, if the non-resonance condition

ωi(k) 6= ωj(k)

is satisfied for all k ∈ R. Herein, ωj is the curve of eigenvalues corresponding to
Rj . Hence, in the Ru-equation the term 2ψKdVRu cannot be eliminated. If only
this term is resonant, it can be controlled with energy estimates. However, for
α > 2 there are k1, k2 > 0 with ωu(kj) = ωv(kj) for j = 1, 2, see the right panel of
Figure 3. Hence, the terms 2ψKdV(0)Rv(kj) for j = 1, 2 cannot be eliminated in
the Ru-equation.

Similarly, in the Rv-equation the term 2ψKdVRv cannot be eliminated. If
only this term is resonant, it can be controlled with energy estimates. The fact,
that ωu(kj) = ωv(kj) for j = 1, 2, implies now that the terms 2ψKdV(0)Ru(kj) for
j = 1, 2 cannot be eliminated in the Rv-equation.
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These resonances can be used to prove that in case of 2π/k1-periodicity, with
k2 6∈ k1N, the KdV equation makes wrong predictions about the dynamics of the
BKG system. In order to illustrate this, we make the ansatz

u = ε2A(ε2t) + εnA1(ε2t)eiωu(k1)teik1x + εnA−1(ε2t)e−iωu(−k1)te−ik1x,

v = εnB1(ε2t)eiωv(k1)teik1x + εnB−1(ε2t)eiωv(−k1)te−ik1x,

to analyze the resonance at the wave number k = k1. Equating the coefficients to
zero at ε4e0ite0ix in the u-equation and at εn+2eiωu(k1)teik1x both in the u and
v-equation yields, with τ = ε2t, that

∂2
τA = 0, (3.1)

2iωu(k1)∂τA1 = −2k2
1(auuAA1 + auvAB1), (3.2)

2iωv(k1)∂τB1 = 2(buuAA1 + buvAB1). (3.3)

The first equation is the KdV equation, i.e., (2.5) restricted to the wave number
k = 0. Hence, for instance on a O(ε−1/2)-time scale w.r.t. τ , the variable A can
be considered to be constant in time. The last two equations can be written as

∂τ

(
A1

B1

)
= M

(
A1

B1

)
with

M =
1

iωu(k1)

(
−auuk2

1A −auvk2
1A

buuA buvA

)
.

By choosing the coefficients auu, auv, buu, and buv in a suitable way the matrix
M has eigenvalues with strictly positive real part. Hence, growth rates eβτ =

eβε
2t = eβT/ε with a β > 0 occur. These allow us to bring εnA1 and εnB1,

which are initially of order O(εn), to an order O(ε2) at a time T = O((n −
2)ε| ln(ε)|) � 1. Therefore, we have that v = O(ε2) far before the natural time
scale of the KdV equation. Hence, in this situation the KdV approximation makes
wrong predictions. These calculations can be transferred into a rigorous proof using
analysis as presented in [20].

3.2. Resonances in the NLS case

The error εβR = U − εψNLS, made by the NLS approximation εψNLS, satisfies

∂tR = ΛR+ 2εN(ψNLS, R) +O(ε2),

where O(ε2) contains the nonlinear terms w.r.t. R and the residual terms, i.e., the
terms which do not cancel after inserting the NLS approximation into the BKG
system. In order to obtain O(ε2) for the residual terms in this equation, higher
order terms have to be added to the NLS approximation εψNLS. This is standard
and so we will concentrate on other aspects. Due to the term 2εN(ψNLS, R) a
simple application of Gronwall’s inequality is not sufficient to obtain an O(1)-
bound for R on the long O(1/ε2)-time scale. A term ψNLSRj can be eliminated
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6ε2

εn

k1

-

6ε2

εn

k1

Figure 4. The mode distribution for t = 0 in the KdV case and
the mode distribution for t = O(| ln ε|/ε2)� O(1/ε3). In the NLS
case the magnitude ε2 has to be replaced by ε and the second time
is t = O(| ln ε|/ε)� O(1/ε2). The KdV/NLS approximation is no
longer valid in the right picture, since the modes at ±k1 are of
the same order as the KdV/NLS modes at k = 0.

in the i-th equation by a near identity change of variables if the non-resonance
condition

ωi(k) 6= 1 + ωj(k)

is satisfied for all k ∈ R.
The resonances found in Figure 5 can be used to prove that in case of 2π/k1-

periodicity with k2 6∈ k1N the NLS equation makes wrong predictions about the
dynamics of the BKG system. In order to illustrate this we make the ansatz

u = εnA1(εt)e−iωu(k1)teik1x + c.c.,

v = εB(εt)eit + εnB1(εt)e−iωv(k1)teik1x + c.c.,

to analyze the resonance at the wave number k = k1. Equating the coefficients to
zero at εeite0ix in the v-equation, at εne−iωu(k1)teik1x in the u-equation, and at
εne−iωv(k1)teik1x in the v-equation, yields, with τ = ε2t, that

2i∂τB = O(ε), (3.4)

−2iωu(k1)∂τA1 = −2avvk
2
1BB1, (3.5)

−2iωv(k1)∂τB1 = 2buvBA1, (3.6)

where we used −ωu(k1) = 1−ωv(k1). The first equation is the NLS equation, i.e.,
(2.7) restricted to the wave number k = 0. Hence, for instance on a O(ε−1/2)-time
scale w.r.t. τ , the variable B can be considered to be constant in time. The last
two equations can be written as

∂2
τA1 = ΓA1 resp. ∂2

τB1 = ΓB1,

with

Γ =
|B|2

ωu(k1)ωv(k1)
avvbuv.
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kk1 kk2

kk1 k

Figure 5. The intersection points of k 7→ ωi(k), and k 7→ ωv(0)±
ωj(k) correspond to resonances. The associated nonlinear terms
cannot be eliminated by near identity change of coordinates. The
two graphs in the first line show that in the Ru-equation terms
ψNLSRv(k1) and ψNLSRu(k2) for wave numbers k1 and k2 cannot
be eliminated. For the same wave number k1 the term ψNLSRu(k1)
cannot be eliminated in the Rv-equation.

Since ωu(k1)ωv(k1) > 0, by choosing avvbuv positive we have growth rates eβτ =
eβεt = eβT/ε with a β > 0. These allow us to bring εnA1 and εnB1, which are
initially of order O(εn), to an order O(ε) at a time T = O((n − 1)ε| ln(ε)|) � 1.
Therefore, we have that v = O(ε) far before the natural scale of the NLS equation.
Hence, in this situation the NLS approximation makes wrong predictions. These
calculations can be transferred into a rigorous proof using analysis as presented in
[20].

4. Validity in the non-oscillatory case

In this section we discuss the validity of the KdV approximation for the BKG
system. There are essentially three different results which we would like to present.
As in [1] the subsequent analysis is not only valid for the KdV limit, but also for
the inviscid Burgers and the Whitham limit.

4.1. Approach 1: using normal form transformations in the non-resonant case

In [6] the BKG system has been considered in case α = 1 or more general in case
without additional resonances, i.e., in case ωu(k) 6= ωv(k) for all k ∈ R. Then with
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normal form transformations and energy estimates the following result has been
established.

Theorem 4.1. Let A ∈ C([0, T0], H8(R,R)) be a solution of the KdV equation (2.5).
Then there exist ε0, C > 0 such that for all ε ∈ (0, ε0) we have solutions (u, v) of
(2.1)-(2.2) with

sup
t∈[0,T0/ε3]

sup
x∈R
|(u, v)(x, t)− (ε2ψKdV

u (x, t), 0)| ≤ Cε7/2.

Sketch of the proof. We write a true solution of (2.1)-(2.2) as approxima-
tion plus error, i.e., u = ε2ψu + εβRu and v = ε4ψv + εβRv with β = 7/2,
where (ε2ψu, ε

4ψv) is an improved approximation which is formally O(ε4) close to
(ε2ψKdV

u (x, t), 0). The error satisfies

∂2
tRu = α2∂2

xRu + ∂2
t ∂

2
xRu + 2ε2∂2

x(auuψuRu + auvψuRv) +O(ε3), (4.1)

∂2
tRv = ∂2

xRv −Rv + 2ε2buuψuRu + 2ε2buvψuRv +O(ε3), (4.2)

where we used the same symbols for the old and new variables. After elimination
of the non-resonant terms the system decouples up to order O(ε3), namely

∂2
tRu = α2∂2

xRu + ∂2
t ∂

2
xRu + 2ε2∂2

x(auuψuRu) +O(ε3),

∂2
tRv = ∂2

xRv −Rv + 2ε2buvψuRv +O(ε3).

Then multiplying the first equation with ∂t∂
−2
x Ru and the second equation with

∂tRv gives, after integration w.r.t. x, the energy estimates

∂t

∫
((∂t∂

−1
x Ru)2 + α2(Ru)2 + (∂tRu)2 − 2ε2auuψu(Ru)2

+(∂tRv)
2 + (∂xRv)

2 + (Rv)
2 − 2ε2buvψu(Rv)

2)dx = O(ε3),

where we used integration by parts, ∂tψu = O(ε), and ∂xψu = O(ε). Hence the
integral on the right hand side stays O(1)-bounded on an O(1/ε3)-time scale.
Since similar estimates can be obtained for the derivatives, the Hs-norm of the
error stays O(1)-bounded on the O(1/ε3)-time scale.

4.2. Approach 2: using the Hamiltonian

The second result is obtained when the lowest order part of the error equation
can be written as Hamiltonian system. Then the ideas of [1] apply. There, a first
justification result for the KdV approximation of a scalar dispersive PDE, posed
in a spatially periodic medium of non-small contrast, has been obtained via some
suitably chosen energy. Surprisingly this method also works in case of stable res-
onances. It is based on

d

dt
H(R(t), t) = ∇H · ∂tR(t) + ∂tH = 0 +O(ε3), (4.3)

since ε2∂tψu = O(ε3) due to the long wave character of the KdV approximation
w.r.t. time. The approximation result is as above. The sketch of the proof in this
case is as follows. Without performing a normal form transform as before, we
multiply the first equation of the system for the error (4.1)-(4.2) with ∂t∂

−2
x Ru
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and the second equation with ∂tRv. This gives after integration w.r.t. x the energy
estimates

∂t(buuEu + auvEv) = ε2s1 +O(ε3),

with

Eu = (∂t∂
−1
x Ru)2 + α2(Ru)2 + (∂tRu)2 − 2ε2auuψu(Ru)2)dx,

Ev =

∫
(∂tRv)

2 + (∂xRv)
2 + (Rv)

2 − 2ε2buvψu(Rv)
2dx,

s1 = 2auvbuu

∫
(∂tRu)ψuRv + (∂tRv)ψuRudx,

where we used integration by parts, ∂tψu = O(ε), and ∂xψu = O(ε). Hence in case
of the same sign of auv and buu the term s1 can be written as time-derivative plus
some small error, i.e.,

∂t

∫
ψuRuRvdx+O(ε),

again due to ∂tψu = O(ε). Therefore, the time derivative term can be included
into the energy on the right hand side. Then we have

∂t(buuEu + auvEv + 2ε2auvbuu

∫
ψuRuRvdx) = O(ε3),

and so the modified energy stays O(1)-bounded on an O(1/ε3)-time scale. Since
similar estimates can be obtained for the derivatives, the Hs-norm of the error
stays O(1)-bounded on the O(1/ε3)-time scale.

4.3. Approach 3: handling unstable resonances

The third approach also works in case of unstable resonances. In order to explain
the underlying idea we go back to the amplitude system (3.2)-(3.3) describing the
unstable resonances. In order to have an O(1)-bound for A1 on an O(1/ε3)-time
scale w.r.t. t we need that A1 is exponentially small initially, i.e., A1(0) = e−r/ε for

an r > 0. Since eβε
2te−r/ε ≤ 1 for t ≤ r/(βε3) the exponential smallness for t = 0

allows to come at least to the correct time-scale. This idea has to be combined
with energy estimates for the wave numbers close to k = 0. With this respect the
approach is more involved than the one used in [14, 17] for the water wave problem
over a flat bottom. There, functions exponentially decaying w.r.t. the Fourier wave
numbers for |k| → ∞ were used for a local existence and uniqueness proof.

Our third approximation result is as follows.

Theorem 4.2. Let A be a solution of the KdV equation (2.5) with

sup
T∈[0,T0]

∫
|Â(K,T )|er|K|dK <∞

for an r > 0. Then there exist ε0 > 0, T1 ∈ (0, T0], C > 0 such that for all
ε ∈ (0, ε0) we have solutions (u, v) of (2.1)-(2.2) with

sup
t∈[0,T1/ε3]

sup
x∈R
|(u, v)(x, t)− (ε2ψKdV

u (x, t), 0)| ≤ Cε7/2.
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A detailed proof will be given in a forthcoming paper.

5. Validity in the oscillatory case

A spectral picture, similar to the one for the BKG system, occurs for the Klein-
Gordon-Zakharov (KGZ) system. A long wave NLS approximation result for the
KGZ system can be found in [16]. A NLS approximation result for wave packets
with carrier wave number k0 > 0 for systems including the BKG system can be
found in [9, 5, 11]. However, none of these results apply in the situation of long
wave NLS approximations with unstable resonances.

In order to explain the underlying idea we again go back the amplitude system
(3.5)-(3.6) describing the unstable resonances. In order to have an O(1)-bound for
A1 on an O(1/ε2)-time scale w.r.t. t, we need that A1 is exponentially small
initially, i.e., A1(0) = e−r/ε for a r > 0. Since eβεte−r/ε ≤ 1 for t ≤ r/(βε2) the
exponential smallness for t = 0 allows us to come at least to the correct time-scale.
This idea has to be combined with energy estimates for the wave numbers close
to k = 0.

Theorem 5.1. Let A be a solution of the NLS equation (2.7) with

sup
T∈[0,T0]

∫
|Â(K,T )|er|K|dK <∞

for an r > 0. Then there exist ε0 > 0, T1 ∈ (0, T0], C > 0 such that for all
ε ∈ (0, ε0) we have solutions (u, v) of (2.1)-(2.2) with

sup
t∈[0,T1/ε2]

sup
x∈R
|(u, v)(x, t)− (0, εψNLS

u (x, t))| ≤ Cε3/2.

A detailed proof will be given in a forthcoming paper.

6. How to transfer the ideas to the water wave problem?

In [20] a counterexample has been constructed showing that the NLS approxima-
tion makes wrong predictions about the dynamics of the water wave problem with
surface tension and periodic boundary conditions, if the surface tension and the
periodicity is suitably chosen. Since the water wave problem with a flat bottom
is a special case of the periodic bottom case this counter example transfers to
the periodic water wave problem. Since the construction of this counter example
is robust under small perturbations of the ground b, a counter example can be
constructed for a slightly periodic bottom, too. Therefore, it is the goal of future
research to prove theorems similar to Theorem 4.2 and Theorem 5.1 for the water
wave problem with a periodic bottom. This will be done by controlling the spa-
tially periodic case first, then by handling the case |l| > 0 by some perturbation
analysis with the help of exponential weights in Bloch space, and finally to use
these exponential weights to control the resonances.
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