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Abstract

The N -wave interaction (NWI) system appears as an amplitude
system in the description of N nonlinearly interacting and linearly
transported wave packets in dispersive wave systems, such as the water
wave problem or problems in nonlinear optics. The purpose of this
paper is twofold. First we give a new simplified proof for the failure
of the NWI approximation in case of resonances which are located at
integer multiples of a basic wave number k0 in the original dispersive
wave system. Secondly, we give a first rigorous proof that an amplitude
system fails in the description of an original system, without imposing
periodic boundary conditions on the original system.

1 Introduction

Amplitude, modulation, or envelope equations, such as the Ginzburg-Landau,
the KdV, or the NLS equation play a big role for the qualitative understand-
ing of pattern forming systems or of dispersive wave systems in spatially
unbounded domains. The last decades saw a big number of approxima-
tion results for these multiple scaling problems. It has been shown that
amplitude equations make correct predictions about the dynamics of the
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original systems, cf. [Cra85a, SW00, SW02, Due12] for the KdV approx-
imation, [Kal88, BSTU06, TW12, DSW16] for the NLS approximation, or
[CE90, vH91, Sch94, Sch99, SZ13] for the Ginzburg-Landau approximation.
For an introduction to the theory see [SU17, Chapters 10-12].

Only for a few examples [Sch95, Sch05] it has been known that amplitude
equations can fail to make correct predictions. Therefore, in the last years,
besides proving approximation results, we started to investigate the failure of
amplitude equations more systematically, cf. [SSZ15, Sch16, BSSZ, dRHS].
It turned out that the question of validity of amplitude equations in many
situations is really subtle. The amplitude equation can fail for Sobolev ini-
tial conditions, but can make correct predictions for analytic conditions, cf.
[Sch95, DHSZ16]. It can fail for periodic boundary conditions, but can make
correct predictions on the whole real line, cf. [DSS16].

The validity of an approximation εαψ on a time scale T = εβt, with
0 < ε� 1 a small perturbation parameter, for a system

∂tu = Λu+B(u, u) + h.o.t.,

with linear operator Λ and symmetric bilinear operator B, is established by
controlling the error R = u − εαψ on the given O(1/εβ)-time scale. The
difficulty lies in the fact that in general β > α such that a simple application
of Gronwall’s inequality will not be sufficient. The equation for the error is
of the form

∂tR = ΛR︸︷︷︸
(1)

+ 2εαB(ψ,R)︸ ︷︷ ︸
(2)

+O(ε2α +R2) + h.o.t..

By adding higher order corrections to the approximation εαψ, in general, it is
possible to get rid of the terms indicated by O(ε2α +R2) + h.o.t.. Therefore,
there are essentially two possibilities how an amplitude equation can fail,
namely failure by linear instability via the terms indicated by (1) and failure
by nonlinear dynamics via the terms indicated by (2).

Examples for (1) are the failure of a number of modulation equations
for the approximate description of the dynamics near unstable dispersive
periodic waves [Sch16, §7.6] and the non-validity of a number of amplitude
equations for the description of modulations of periodic waves at the Eck-
haus boundary [dRHS, §8.4] in dissipative systems. Examples for (2) are
the failure of the Newell-Whitehead equation for pattern forming systems
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via quadratic transverse instabilities [Sch95, §4], the failure of the NLS ap-
proximation for the water wave problem with suitably chosen small surface
tension and periodic boundary conditions [SSZ15] via unstable resonances,
and the failure of the NLS approximation for a modified Zakharov system
[BSSZ, §4].

In this paper, with the failure of the N wave interaction (NWI) approxi-
mation for a special model problem we give a first example for (2), without
imposing periodic boundary conditions on the original system. The main
ingredients of our construction are a periodic arrangement of resonant wave
numbers and a finite speed of propagation in the original system. The con-
struction goes in two steps.

First, in Section 4 we use this periodically arranged quadratic resonances
to give a new simplified proof for the failure of the NWI approximation in
case of suitably chosen periodic boundary conditions. The new proof avoids
a number of unsatisfactory steps from the proof given in [SSZ15] for the
possible failure of the NLS approximation in this situation. We remark that
in case of periodic boundary conditions on the original system the NWI
approximation with N = 1 and the NLS approximation coincide, of. Section
2.

Secondly, in Section 5 we use the result from the first step and the fi-
nite speed of propagation of the original system to give the first rigorous
proof that an amplitude system fails in the description of the original sys-
tem without imposing periodic boundary conditions on the original system.
As preparation, we provide some background about the NWI approximation
and about stable and unstable quadratic resonances.

We refrain from greatest generality and restrict ourselves to a particular
equation which we introduce at the beginning of Section 3.1. We expect
that the ideas of the present paper apply to the water wave problem without
surface tension over a suitably chosen periodic bottom, cf. Remark 6.3.

Acknowledgement. The paper is partially supported by the Deutsche
Forschungsgemeinschaft DFG through the SFB 1173 ”Wave phenomena”.

2 Some background

In this section we provide some background which is necessary for the un-
derstanding of the subsequent sections. These are the basics of the NWI
approximation and the notion of stable and unstable quadratic resonances.
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2.1 The NWI approximation

There are essentially two consistent descriptions of modulated oscillating
wave packets for dispersive wave systems by amplitude equations. These are
the Nonlinear Schrödinger (NLS) description

εψNLS(ε, x, t) = εA(ε(x+ ct), ε2t)ei(k1x+ω1t) + c.c.+O(ε2), (1)

and the N wave interaction (NWI) description

εψNWI(ε, x, t) =
∑
j∈IN

εAj(ε
2x, ε2t)ei(kjx+ωjt) + c.c.+O(ε2), (2)

with index set IN = {1, . . . , N}, cf. [AS81]. Herein, we have the small pertur-
bation parameter 0 < ε� 1, the amplitude functions A(ξ, τ), Aj(X, τ) ∈ C,
and the wave numbers kj = −k−j ∈ R and ωj = −ω−j ∈ R which are related
via the linear dispersion relation of the original system. The spatial scalings
in the NLS and NWI ansatz are different, see Figure 1.

x

1/ε

ε−

| |

ω

x

1/ε2| |

ε−

ω

Figure 1: Left panel: The NLS scaling: An amplitude function of size O(ε)
modulates on an O(1/ε) spatial scale the underlying carrier wave. Right
panel: The NWI scaling: An amplitude function of size O(ε) modulates on
an O(1/ε2) spatial scale the underlying carrier wave in case N = 1.

The amplitude function A in the NLS description varies via ξ = ε(x+ ct)
on a spatial scale of order O(1/ε). It is transported with velocity c and is
affected by dispersion on the O(1/ε2)-time scale via the subsequent iν1∂

2
ξA-

term in the NLS equation

∂τA = iν1∂
2
ξA+ iν2A|A|2, (3)
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with coefficients νj ∈ R. In lowest order the amplitude function A satisfies
the NLS equation (3).

In contrast, the amplitude functions Aj in the NWI description vary via
X = ε2x on a spatial scale of order O(1/ε2). They are transported via the
subsequent terms cj∂XAj in (4), and up to the order of preciseness of the
ansatz they are not affected by dispersion on the O(1/ε2)-time scale. Plug-
ging in the NWI ansatz into the original system and equating the coefficients
of ε3ei(kjx+ωjt) to zero yields in general the (non-resonant) NWI system

∂τAj = cj∂XAj + i
∑
l∈IN

dj,l|Al|2Aj, (4)

with group velocities cj = dω
dk
|k=kj ,ω=ωj

and coefficients dj,l ∈ R, in case the
wave numbers kj and ωj are not in quadratic or cubic resonance, see (5) and
(8).

In case that four spatial wave numbers kj, kj1 , kj2 , kj3 ∈ R together with
their associated temporal wave numbers ωj, ωj1 , ωj2 , ωj3 ∈ R satisfy

kj + kj1 + kj2 + kj3 = 0 and ωj + ωj1 + ωj2 + ωj3 = 0, (5)

we obtain the resonant NWI system

∂τAj = cj∂XAj + i
∑
l∈IN

djl|Al|2Aj + i
∑

(5) is satisfied

djj1j2j3Aj1Aj2Aj3 , (6)

with additional coefficients djj1j2j3 ∈ R. Resonant NWI systems appear in a
number of physical situations. They are used as a model for the description of
gravity driven surface water waves, cf. [AS81, Cra85b], and they are expected
to be important in the description of so called freak waves in deep sea, cf.
[Kar11].

In case of no quadratic resonances, see (8), the justification of the NLS
and NWI approximations via error estimates can be done very similarly,
cf. [SZ05]. In contrast to the NLS approximation the NWI approximation
changes so slowly in space and time, that resonances of the original system
have enough time to destroy the NWI approximation property. For a more
detailed discussion see Section 5 and Remark 6.1.

In case of 2π/k0-periodic boundary conditions the (multi-) NLS and NWI
approximation coincide

εψperNLS(ε, x, t) = εψperNWI(ε, x, t) =
∑
j∈IN

εAj(ε
2t)ei(kjx+ωjt) + c.c.+O(ε2). (7)
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We remark that periodic boundary conditions on the original system corre-
spond to ξ-, respectively X-independent solutions of (3) and (4).

2.2 Stable and unstable quadratic resonances

In systems with a quadratic nonlinearity spatial wave numbers k̃1, k̃2, and k̃3

with associated temporal wave numbers ω̃1, ω̃2, and ω̃3 are called quadrati-
cally resonant if

k̃1 + k̃2 + k̃3 = 0 and ω̃1 + ω̃2 + ω̃3 = 0. (8)

The dynamics of the resonant modes

εψTWI(ε, x, t) =
∑
j=1,2,3

εBj(εt)e
i(k̃jx+ω̃jt) + c.c.,

with k̃j = −k̃−j, is approximately described by the resonant three wave
interaction (TWI) system

∂TB1 = iγ1B2B3, ∂TB2 = iγ2B1B3, ∂TB3 = iγ3B1B2,

with amplitudes Bj(T ) = B−j(T ) ∈ C and coefficients γj ∈ R, cf. [Cra85b].
The TWI approximation is fundamentally different from the NWI approx-
imation, because it describes quadratic resonances which are explicitly ex-
cluded among the wave numbers kj of the NWI approximation, i.e., in the

following we will have k3 = k̃3, but |k̃1|, |k̃2| 6∈ {k1, . . . , kN}. As a conse-
quence of the quadratic resonance the dynamics of the TWI modes happens
on a much shorter time scale than the NWI dynamics.

The resonant wave number k̃1 is called stable if the invariant subspace
M1 = {(B1, 0, 0) : B1 ∈ C} for the TWI system is stable. It is called
unstable, if M1 is unstable. There is a simple stability criterion. M1 is
stable, if γ2γ3 < 0, and unstable, if γ2γ3 > 0. It is an easy exercise to see
that, independent of the signs of the γjs, at least one of the subspaces Mj is

unstable, say the one to the wave number k̃3.
In the following this unstable resonance is used as follows. For our pur-

poses we restrict ourselves to the NWI approximation with N = 1 and asso-
ciated wave number k∗. We suppose that k∗ = k̃3 is quadratically resonant
with two other wave numbers k̃1 and k̃2, where all the k̃j are integer multiples
of a basic wave number k0 > 0. In such a situation the NWI approximation
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in case of 2π/k0-periodic boundary conditions will fail to make correct pre-
dictions about the dynamics of the original system.

The reason is as follows. Since k∗ = k̃3 is an unstable resonance, the
solution at k̃1 and k̃2 will grow. If the k̃3-mode is of order O(ε), like for the
NWI approximation, the growth happens with a rate of order O(eεt). Since
the solution at k̃1 and k̃2 is small initially in terms of ε, it takes a little bit
longer than O(1/ε) for these modes to grow to the size O(ε) of the NWI
approximation, but this will happen far before the end of the NWI O(1/ε2)-
time scale. Since the modes to k̃1 and k̃2 belong to the error and not to the
NWI approximation, the NWI system cannot make correct predictions on its
natural time scale, see Figure 2. In Section 4 these heuristic arguments are
made rigorous.

-

6 ε

εn

k̃3−k̃1 −k̃2

-

6 ε

k̃3−k̃1 −k̃2

Figure 2: The mode distribution for t = 0 and the mode distribution for
t = O(| ln ε|/ε) � O(1/ε2). The NWI approximation is no longer valid in

the right picture, since the modes at ±k̃1 and ±k̃2 are of the same order
w.r.t. powers of ε as the NWI mode at k = k∗ = k̃3.

3 The result

In this section we construct our model problem, a scalar PDE on the real
line, we derive the associated TWI and NWI system, and state our non-
approximation results.
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3.1 The model problem

For showing that the NWI approximation can make wrong predictions, with-
out imposing periodic boundary conditions on the original system, we use
two ingredients, namely a periodic arrangement of the quadratically resonant
wave numbers and a finite speed of propagation in the original system. In
Section 4 we use these periodically arranged quadratic resonances to prove
the failure of the NWI approximation in case of suitably chosen periodic
boundary conditions. In Section 5 we use the result from Section 4 and
the finite speed of propagation of our chosen original system to give a first
proof that an amplitude system fails in the description of the original system
without imposing periodic boundary conditions on the original system.

In order to construct an original system with these properties we proceed
as follows. First, the resonant wave numbers k̃1, k̃2, and k̃3 will be chosen
as k̃1 = −k0, k̃2 = −2k0, and k̃3 = 3k0 for a suitably chosen k0 > 0. Then
we choose a dispersion relation which gives a finite speed of propagation,
i.e., supk∈R |dωdk | ≤ C and for which ω̃1 + ω̃2 + ω̃3 = 0, with ω̃3 = ω(k3),
ω̃2 = −ω(k2), and ω̃1 = −ω(k1). For instance

ω2 = 1− k2

k2 + 1
+ 80

(k
5
)2

(k
5
)2 + 1

(9)

is such a dispersion relation. This can be seen easily from the left panel of
Figure 3. We choose ω(k) to be the positive root.

The resonance function

r(k) = ω(3k)− ω(k)− ω(2k) (10)

has two positive zeroes. See the right panel of Figure 3. In the following
w.l.o.g. let k0 be the larger of the two positive zeroes of r.

Therefore, as already stated above, we have ω1 + ω2 + ω3 = 0 for ω3 =
ω(k3), ω2 = −ω(k2), and ω1 = −ω(k1).

In order to construct a PDE having the dispersion relation (9), we use
that (9) can be written as

ω2(k2 + 1)((
k

5
)2 + 1) = (k2 + 1)((

k

5
)2 + 1)− k2((

k

5
)2 + 1) + 80(

k

5
)2(k2 + 1).

8



5
|

k

1−−

ω

3
|

−1−−

k0

Figure 3: Left panel: The curves of eigenvalues k 7→ ±ω(k) for the linearized
model equation (9) plotted as a function over the Fourier wave numbers.
Right panel: Plot of the resonance function r = r(k), cf. (10), which has two
positive zeroes.

Such a polynomial relation comes from the linear PDE

−∂2
t (−∂2

x + 1)(− 1

25
∂2
x + 1)u = (−∂2

x + 1)(− 1

25
∂2
x + 1)u

+∂2
x(−

1

25
∂2
x + 1)u− 80

1

25
∂2
x(−∂2

x + 1)u

which can be rewritten as

P (∂x)∂
2
t u = Q(∂x)u.

with

P (∂x) = 1− 26

25
∂2
x +

1

25
∂4
x and Q(∂x) = −1 +

81

25
∂2
x −

16

5
∂4
x.

For our purposes we add some quadratic terms to this linear PDE. So, we
finally choose

P (∂x)∂
2
t u = Q(∂x)u+ P (∂x)u

2. (11)

By this choice the system can be written as

∂2
t u = ω2(−i∂x)u+ u2. (12)

As a consequence also the nonlinear terms lead to a finite speed of propa-
gation, since they have no derivatives in front. Moreover, this choice in the
following allows a simple calculation of all nonlinear coefficients.
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Remark 3.1. Since ω is a bounded operator in Hs, the Picard-Lindelöf
theorem applies. Therefore, there is local existence and uniqueness of so-
lutions. Moreover, u ∈ C([0, T0], Hs) for s ≥ 1 for solutions u implies
u ∈ Cn([0, T0], Hs) for all n ∈ N.

3.2 Derivation of the NWI and TWI approximation

In this section we compute the resonant TWI approximation and the NWI
approximation for our model equation (12). We start with the resonant TWI
approximation and make the ansatz

u (x, t) ≈ εψTWI(ε, x, t) =
3∑
j=1

εBj (εt) ei(k̃jx+ω̃jt) + c.c., (13)

where k̃1 + k̃2 + k̃3 = 0, with k̃3 > 0, k̃1 < 0, and k̃2 < 0, and ω̃1 + ω̃2 + ω̃3 = 0,

with ω̃3 > 0, ω̃1 < 0, and ω̃2 < 0. By equating the coefficient of ei(k̃1x+ω̃1t)

to zero, we find

−εiω̃2
1B1 + ε22iω̃1∂TB1 + ε3∂2

TB1 = −εiω̃2
1B1 + 2ε2B2B3,

and similar for B2 and B3. Hence, at ε2 we find

∂TB1 = iγ1B2B3, ∂TB2 = iγ2B1B3, ∂TB3 = iγ3B1B2, (14)

where γj = − 1

ω̃j
. Therefore, we have γ3 < 0, γ1 > 0, and γ2 > 0.

As a consequence the B3-subspace of the resonant TWI system (14) is

unstable and so we choose k∗ = k̃3 = 3k0 as basic wave number for the
derivation of the NWI approximation with N = 1. We make the ansatz

u (x, t) ≈ ψNWI(ε, x, t) = (εA1

(
ε2x, ε2t

)
ei(k∗x+ω3t) + c.c.) + ε2A0,0

(
ε2x, ε2t

)
+(ε2A2,0

(
ε2x, ε2t

)
e2i(k∗x+ω3t) + c.c.).

With ω2
j = ω2(jk0) and ωj > 0, this gives by equating the coefficient of

ε3ei(k̃∗x+ω3t), of ε2, and of ε2e2i(k̃∗x+ω3t) to zero, that

2iω3∂τA1 = ν∂XA1 + 2A1A0,0 + 2A2,0A−1,

0 = −ω2
0A0,0 + 2A1A−1,

−4ω2
3A2,0 = −ω2

6A2,0 + A2
1.
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Eliminating A0,0 and A2,0 in the first equation via the second and third
equation yields the NWI system

2iω3∂TA1 = ν∂XA1 + γA1 |A1|2 , (15)

with

γ =
2

ω2
0

+
1

ω2
6 − 4ω2

3

and
ν

2iω3

=
dω

dk

∣∣∣
k=k∗

.

In case of 2π
k0

-spatially periodic boundary conditions on (11), the NWI system
(15) degenerates into the ODE

2iω3∂TA1 = γA1 |A1|2 , (16)

and the approximation is given by

u (x, t) ≈ ψper
NWI(ε, x, t) = (εA1

(
ε2t
)
ei(k∗x+ω3t) + c.c.) + ε2A0,0

(
ε2t
)

+(ε2A2,0

(
ε2t
)
e2i(k∗x+ω3t) + c.c.).

3.3 The non-approximation results

It is the purpose of this section to state our non-approximation results, i.e.,
to give a precise statement for the fact that the NWI approximation fails
to predict the dynamics of our model problem (12) for small values of the
perturbation parameter 0 < ε� 1 on the natural time scale O(1/ε2) of the
NWI approximation. We start with the non-approximation result in case of
2π/k0-periodic boundary conditions.

Theorem 3.2. Assume the situation decrsibed in Section 3.2 and consider
(12) with periodic boundary conditions uper(x, t) = uper(x + 2π/k0, t) for all
x ∈ R. Let A ∈ C([0, T0],C) be a solution of the NWI equation (16). Then
there exist ε0 > 0, C1 > 0, and C2 > 0 such that for all ε ∈ (0, ε0) there is
an open set of initial conditions in H1

per for (12) with

‖uper(·, 0)− εψper
NWI(ε, ·, 0)‖H1

per
+ ‖∂tuper(·, 0)− ε∂tψper

NWI(ε, ·, 0)‖H1
per
≤ C1ε

2,

for which the associated solutions satisfy

sup
t∈[0,1/ε3/2]

sup
x∈R
|uper(x, t)− εψper

NWI(ε, x, t)| ≥ C2ε.
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This means that the error made by the NWI approximation is of the
same order as the solution u(·, t) and the NWI approximation εψper

NWI(·, t) far
before the end of the natural approximation time of the NWI approximation,
although the initial condition uper(·, 0) of the original system and the initial
NWI approximation εψper

NWI(·, 0) are close together. Therefore, the dynamics
of the NWI system in general can not be used to predict the dynamics of the
original system (11) in case of 2π/k0-periodic boundary conditions.

The theorem can be improved in various directions. First of all the initial
condition uper(·, 0) can be chosen much closer to an higher order NWI ap-
proximation, cf. Section A. Every polynomial order O(εn) with n ∈ N w.r.t.
the small perturbation parameter 0 < ε � 1 would be fine. Secondly, from
the proof given in Section 4 it will be clear that failure of the approximation
is not the exception, but the rule, for our set-up.

In Section 5 we use Theorem 3.2 and the finite speed of propagation of
the original system (11) to give a rigorous proof that the NWI approximation
fails in the description of the original system (11) also in case without periodic
boundary conditions on (11). In detail we prove:

Theorem 3.3. Assume the situation decrsibed in Section 3.2 and consider
(12) with x ∈ R. There is a solution A ∈ C([0, T0], Hs) with s ≥ 2 arbitrary,
but fixed, of the NWI equation (15) for which there exist ε0 > 0, C1 > 0,
and C2 > 0 such that for all ε ∈ (0, ε0) there are solutions of (12) satisfying
initially

‖u(·, 0)− εψNWI(ε, ·, 0)‖C1
b

+ ‖∂tu(·, 0)− ε∂tψNWI(ε, ·, 0)‖C1
b
≤ C1ε

2,

for which
sup

t∈[0,1/ε3/2]

sup
x∈R
|u(x, t)− εψNWI(ε, x, t)| ≥ C2ε.

The assertion of Theorem 3.3 is much weaker than the assertion of Theo-
rem 3.2. This is due to the construction of the solution A of (15), cf. Section
5. However, in the class of solutions constructed in Section 5, the previous
remarks apply for the problem on the real line, too.

4 A new proof in case of periodic b.c.

Unstable quadratic resonances in dispersive wave systems have been used
before to prove that NLS and NWI approximations can fail in case of 2π/k0-
periodic boundary conditions assuming that the three resonant wave numbers
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k̃1, k̃2, and k̃3 are integer multiples of k0. They have been used in [SSZ15] for
proving the failure of the NLS approximation for the water wave problem with
suitably chosen small surface tension and periodic boundary conditions. The
proof given in [SSZ15] is unsatisfactory in the sense that an approximation
theorem beyond the natural time scale for an extended TWI system has to be
established and the qualitative behavior of this high-dimensional amplitude
system has to be discussed.

The first purpose of this paper is thus to develop an alternative strategy
which is based on the instability proof of spectrally unstable fixed points and
which avoids the previous unsatisfactory steps. Therefore, the rest of this
section contains the proof of Theorem 3.2.

4.1 The functional analytic set-up

We consider 2π/k0-spatially periodic solutions of (12) which is expanded in
Fourier modes

uper(x, t) =
∑
j∈Z

uj(t)e
jk0x.

Inserting this Fourier expansion into our original system (12) yields for the
Fourier coefficients

∂2
t uj(t) = −ω2

juj(t) +
∑
m∈Z

uj−m(t)um(t). (17)

It is well known that the Fourier transform u 7→ û with û = (uj)j∈Z is an
isomorphism between H1

per and

`2
1 = {û : Z→ C : ‖û‖2

`21
=
∑
j∈Z

|uj|2(1 + j2) <∞}.

The norm in (`2
1)m is denoted with ‖ · ‖`21 , too. Since H1

per is closed under

multiplication, the space `2
1 is closed under convolution.

System (17) is written as first order system by introducing ũj through
∂tuj = iωjũj. After diagonalization

vj,+ =
1√
2

(uj + ũj), vj,− =
1√
2

(uj − ũj)
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we obtain

∂tvj,±(t) = iωj,±vj,±(t) (18)

+ρj,±
∑
m∈Z

(vj−m,+(t) + vj−m,−(t))(vm,+(t) + vm,−(t)),

where ρj,± = ∓ 1
2
√

2iωj
and ωj,± = ±ωj. We introduce v̂ = (vj,+, vj,−)j∈Z ∈

(`2
1)2. Since we have supj∈Z |ωj| < ∞, the right hand side of (18) is locally

Lipschitz-continuous in (`2
1)2, and so there is the local existence and unique-

ness of solutions with the Picard-Lindelöf theorem in (`2
1)2, cf. Remark 3.1.

4.2 The normal form transformation

By near identity transformations, such as

wj,sj = vj,sj +
∑

j1,j2∈Z,sj1 ,sj2∈{+,−}

α
sjsj1sj2
jj1j2

vj1,sj1vj2,sj2 (19)

with

α
sjsj1sj2
jj1j2

=
δj,j1+j2ρj,sj

ωj,sj − ωj1,sj1 − ωj2,sj2
∈ C (20)

all terms vj1,sj1vj2,sj2 can be eliminated if the non-resonance condition ωj,sj 6=
ωj1,sj1 + ωj2,sj2 is satisfied. Due to the resonances constructed in Section 3.1
we set

α+−−
3,−1,−2 = α−+−

−1,3,−2 = α−+−
−2,3,−1 = α+−−

3,−2,−1 = α−−+
−1,−2,3 = α−−+

−2,−1,3 = 0

and
α−++
−3,1,2 = α+−+

1,−3,2 = α+−+
2,−3,1 = α−++

−3,2,1 = α++−
1,2,−3 = α++−

2,1,−3 = 0,

but choose (20) otherwise.

Lemma 4.1. There exists an r > 0 such that for all v ∈ `2
1 with ‖v‖`21 < r the

near identity change of variables (19) is a smooth invertible mapping v 7→ w
with ‖w − v‖`21 ≤ C‖v‖2

`21
.

Proof. Young’s convolution inequality implies

(
∑

j∈Z,sj∈{+,−}

(
∑

j1,j2∈Z,sj1 ,sj2∈{+,−}

α
sjsj1sj2
jj1j2

vj1,sj1vj2,sj2 )2)1/2

≤ 4 sup
j,j1,j2∈Z,sj ,sj1 ,sj2∈{+,−}

|αsjsj1sj2jj1j2
| ‖v‖2

`21
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where we used Sobolev’s embedding `2
1 ⊂ `1. Since v 7→ w is a polynomial

and w 7→ v a convergent power series in a small ball of `2
1 the smoothness is

obvious.

After the near identity transformations the new system is given by

∂tw−1,− = −iω1w−1,− + 2ρ−1,−w3,+w−2,−+, g−1,−

∂tw−2,− = −iω2w−2,− + 2ρ−2,−w3,+w−1,− + g−2,−, (21)

∂tw3,+ = iω3w3,+ + 2ρ3,+w−2,−w−1,− + g3,+,

and similar for the index pairs (1,+), (2,+), and (3,−), where we used
wj,+ = w−j,−. For all other index pairs we have

∂twj,s = iωj,swj,s + gj,s.

The nonlinear terms gj,s satisfy

‖g‖`21 ≤ C‖w‖3
`21

where g = (gj,s)j,s∈Z×{+,−} : (`2
1)2 → (`2

1)2 is an analytic function for ‖v‖`21 < r
for r > 0 sufficiently small, cf. Lemma 4.1. The system for ŵ = (wj,+, wj,−)j∈Z
is abbreviated as

∂tŵ = Λŵ +N(ŵ). (22)

Remark 4.2. For System (21) the TWI system can be derived by mak-
ing the ansatz w−1,−(t) = εB1(εt)e−iω1t, w−2,−(t) = εB2(εt)e−iω2t, w3,+(t) =
εB3(εt)eiω3t, similar for the index pairs (1,+), (2,+), and (3,−), and wj,s(t) =
0 for all other index pairs. In lowest order the Bj satisfy the TWI system
(14).

4.3 The NWI approximation

The NWI approximation to the unstable subspace of the TWI approximation
can be derived by making the ansatz

w3,+(t) = εψ3,+(t)eiω3t = εA1(εβt)eiω3t,

similar for w−3,−(t), and wj,s(t) = 0 for all other index pairs. With τ = εβt
we find

∂τA1 = O(ε2−β)A1|A1|2.

15



Before we had chosen β = 2, but since the failure will happen on anO(| ln(ε)|/ε)-
time scale for our purposes it is sufficient to choose a β ∈ (1, 2), for instance
β = 3/2, what we will do in the following. Thus, on the O(1/ε3/2)-time scale,
the NWI approximation can be considered to be stationary, in detail we have

|εψ3,+(t)− εψ3,+(0)| ≤ Cε3t. (23)

For our subsequent estimates we need that the residual for the NWI approx-
imation is small. The residual

Res(ŵ) = −∂tŵ + Λŵ +N(ŵ).

contains all terms which do not cancel after inserting the NWI approximation
into the equation. In Section A we recall the construction of an approxima-
tion εψ with w±3,±(t) = εψ±3,±(t), but now only with |wj(t)| ≤ O(ε3) instead
of wj(t) = 0 for t ∈ [0, 1/ε2] for all other index pairs and

sup
t∈[0,1/ε3/2]

‖Res(εψ)‖`21 ≤ Cεn+2 (24)

for a chosen fixed n ∈ N. For the statement of the theorem n = 2 is sufficient.
We remark that only finitely many other wj,± are non-zero and all of them
are integer multiples of the index j = 3, cf. Section A.

4.4 Estimates for the unstable sector

The solution ŵ of (22) is a sum of the NWI approximation εψ and an error

R̂. We set

w−1,−(t) = R−1,−(t)e−iω1t,

w−2,−(t) = R−2,−(t)e−iω2t,

w3,+(t) = εψ3,+(t)eiω3t +R3,+(t)eiω3t

and similar for the index pairs (1,+), (2,+), and (3,−). For all other index
pairs we set

wj,±(t) = ε2ψj,±(t)e±iωjt +Rj,±(t)e±iωjt,

with ψj,± = O(1) for j ∈ 3Z and ψj,± = 0 else. Using (23) the error satisfies

∂tR−1,− = 2ερ−1,−ψ3,+|t=0R−2,− + h−1,−,

∂tR−2,− = 2ερ−2,−ψ3,+|t=0R−1,− + h−2,−,

∂tR3,+ = h3,+,
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and similar for the index pairs (1,+), (2,+), and (3,−). For all other index
pairs we find

∂tRj,± = hj,±.

The nonlinear terms hj,± satisfy

‖h‖`21 ≤ C(ε2 + ε3t)‖R‖`21 + C‖R‖2
`21

+ C‖Res‖`21 ,

for ‖R‖`21 ≤ 1, where h = (hj,s)(j,s)∈Z×{+,−} : (`2
1)2 → (`2

1)2 is an analytic
function in a sufficiently small, but ε-independent, ball.

In order to compute the eigenvalues εµ± of the R±1,± and R±2,± part, we
differentiate the first linearized equation and insert the second equation. We
obtain

∂2
tR−1,− = 4ε2ρ−1,−ρ−2,−|ψ3,+|t=0|2R−1,−,

and so
µ± = ±2(ρ−1,−ρ−2,−)1/2|ψ3,+|t=0|.

We diagonalize the R±1,± and R±2,± part and obtain new equations

∂tRu = µεRu + hu,

∂tRs = −µεRs + hs,

with hu and hs obeying the same properties as the hj.
We introduce the quantities

Eu = |Ru|2 and Es = |Rs|2 + Σother(j,±) |Rj,±|2 (1 + j2).

For E = Eu − Es we find

d

dt
E = 2µεEu + 2µεEs − Σother(j,±)(Rj,±hj,± + hj,±Rj,±)(1 + j2)

+2Re(Ruhu −Rshs)

≥ 2µεEu − |Σother(j,±)(Rj,±hj,± + hj,±Rj,±)(1 + j2)|
−2|Ruhu| − 2|Rshs|

≥ 2µεEu − 2‖R‖`21(C(ε2 + ε3t)‖R‖`21 + C‖R‖2
`21

+ C‖Res‖`21)

≥ 2µεEu − C1(ε2 + ε3t)Eu − C1(ε2 + ε3t)Es − C2E
3/2
u − C2E

3/2
s − C3‖Res‖`21

≥ µεEu − µεEs − C3‖Res‖`21
≥ µεE − C3‖Res‖`21 ≥

1

2
µεE,

17



with positive constants C1, C2, and C3, under the assumptions

C1(ε+ ε2t) ≤ µ/2, (25)

C2E
1/2
u ≤ µε/2, (26)

C2E
1/2
s ≤ µε/2, (27)

C3‖Res‖`21 ≤ µεE/2. (28)

Define
t∗ = inf{t : E(t) ≥ µε/2}.

We are done if we prove t∗ ≤ 1/ε3/2.
On the time interval [0, 1/ε3/2] the assumption (25) can be satisfied by

choosing ε0 > 0 so small that

C1(ε0 + ε
1/2
0 ) ≤ µ/2.

In order to satisfy (28) we recall that in (24) we assumed a NWI approxima-
tion εψ with

‖Res‖`21 = O(εn+2),

cf. Section A for details about the construction. Assumption (28) will follow
from

C3‖Res‖`21 ≤ µεE(0)/2. (29)

Assumption (29) holds for ε0 > 0 sufficiently small since Eu(0) = O(εn).
If the assumptions (26) and (27) are not satisfied for a t ∈ [0, 1/ε3/2] we

are done. Hence, we assume in the following that (26) and (27) are satisfied.
Due to continuity assumption (29) implies that (28) holds also for all

t > 0 in a neighborhood of t = 0. Therefore, the assumptions (25)-(28) are
satisfied in this neighborhood and there we we find

E(t) ≥ E(0)eµεt/2.

With the same argument assumption (28) holds for all t ∈ [0, t∗] and so
E(t) ≥ E(0)eµεt/2 for all t ∈ [0, t∗]. We remark that by construction and
continuity of E(t) we then have Es(t) ≤ Eu(t). From Eu(0) = O(εn) it
follows E(t) = O(ε) = eµεtO(εn) for t = O((n − 1)| ln(ε)|/ε) � 1/ε3/2

contradicting the assumptions (26) and (27). Therefore, t∗ ≤ 1/ε3/2.
Therefore, we are done.
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5 Failure without imposing periodic b.c.

In this section we give the proof of Theorem 3.3. In order to prove that
the NWI approximation εψNWI also fails for (11) without imposing periodic
boundary conditions, we use the failure of the NWI approximation for (11)
with 2π/k0-spatially periodic boundary conditions, such as stated in Theorem
3.2.

Model (11) possesses a finite speed of propagation whose absolute value is
bounded by cg, i.e., the value of u(x, t) only depends on u(y, t) with |y−x| ≤
cg(t2− t1) if t2 ≥ t1. With the help of uper(x, t) and εψper

NWI(x, t) we construct
a solution u(x, t), respectively initial condition u(x, 0) for (11) for which
the NWI approximation ψNWI fails to make correct predictions about the
dynamics without imposing periodic boundary conditions on (11), i.e. we
can choose

lim
|x|→∞

u(x, t) = 0 and lim
|x|→∞

εψ(x, t) = 0.

We write the solution uper(x, t) from Theorem 3.2 as

uper(x, t) = u3,+(t)ei(k3x+ω3t)+u−1,−(t)e−(k1x+iω1t)+u−2,−(t)e−(k2x+iω2t)+c.c.+urest(x, t),

with supt∈[0,1/ε3/2] supx∈R |urest(x, t)| ≤ Cε2. Based on this representation we
define

ũj,s(ξ, 0) =


uj,s(0), for |ξ| ≤ 3,

0, for |ξ| ≥ 5,
rj(ξ), ξ else,

with |rj(ξ)| ≤ |uj,s(0)| such that ũj,s ∈ C∞0 for (j, s) ∈ {(±3,±), (±2,±), (±1,±)}.
Then, we define

εψNWI(x, 0) = ũ3,+(ε2x, 0)eik3x + c.c.

and set

u(x, 0) = ũ3,+(ε2x, 0)eik3x + ũ−1,−(ε2x, 0)e−ik1x + ũ−2,−(ε2x, 0)e−ik2x + c.c.

On the one hand we have

sup
x∈R
|u(x, 0)− εψNWI(x, 0)|

≤ sup
|x|≤3/ε2

|uper(x, 0)− εψper
NWI(x, 0)|

+ sup
3/ε2≤|x|≤5/ε2

|
∑
|j|∈{1,2}

rj(ε
2x, 0)eikjx| ≤ 3ε2
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and similar for the time derivatives. But on the other hand we have

sup
t∈[0,1/ε3/2]

sup
x∈R
|u(x, t)−εψNWI(x, t)| ≥ sup

t∈[0,1/ε3/2]

sup
|x|≤1/ε2

|uper(x, t)−εψper
NWI(x, t)| ≥ Cε,

since u(x, t) for |x| ≤ 1/ε2 is only affected by u(y, 0) for

|y − x| < cgt ≤ cg/ε
3/2 � 1/ε2.

See the left panel of Figure 4.

x

t = O(| ln(ε)|/ε)

x

t = O(| ln(ε)|/ε)

x

1/ε2| |

ε−

x

1/ε

ε−

| |

Figure 4: Left panel: For the NWI spatial scaling of order O(1/ε2) the
transport of velocity O(1) is too slow to hinder the resonances to grow. If
the solution uper and u coincide in the yellow rectangle fot t = 0, they still
coincide for t = O(| ln(ε)|/ε). Right panel: For the NLS spatial scaling of
order O(1/ε) the transport of velocity O(1) is sufficiently fast to hinder the
resonances to grow.

6 Discussion

We close this paper with a number of remarks about possible extensions of
the previous constructions.
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Remark 6.1. As already said, there are essentially two consistent descrip-
tions of oscillating wave packets for dispersive wave systems by amplitude
equations, namely the NLS description and the NWI description. The pre-
vious construction in Section 5 is not possible for the NLS approximation.
The failure in the periodic situation happens at a time of order O(| ln ε|/ε).
Giving up the periodicity the spatial domain of the NLS approximation is
O(1/ε) and thus smaller than the spatial domain of size O(| ln ε|/ε) which is
influenced by the neighboring points on the O(| ln ε|/ε) time scale. See the
right panel of Figure 4. In fact we expect that due to the different group
velocities at the resonant wave numbers the NLS approximation is valid for
spatially localized solutions, even in case of k1 in (1) belonging to an unstable
resonance. See [Sch05, §4] or [MN13] for more explanations and [DHSZ16]
for NLS approximation properties in case of unstable resonances and analytic
initial conditions.

Remark 6.2. For original systems with an unbounded speed of propagation
or resonant wave numbers which are not integer multiples of a basic wave
number k0, the main difficulty in giving a proof of failure for the NWI ap-
proximation are bounds on the derivatives of the solutions of an extended
TWI system on the O(| ln(ε)|/ε)-time scale. These bounds are necessary
for making the residual small. So far we could only establish these for the
lowest order part of the approximation by an explicit representation of the
solutions. In [Sch05] the NLS approximation has been justified in case that
the wave number k1 of the underlying oscillatory wave packet in (1) belongs
to a stable resonance.

Remark 6.3. Although (11) is a rather artificial scalar PDE problem we
strongly expect that in principle the same construction will be possible for the
water wave problem without surface tension over a suitably chosen periodic
bottom. The water wave problem without surface tension has a finite speed
of propagation for solutions of order O(ε), and we expect that the periodic
bottom allows to arrange the resonances in the way necessary for the previous
construction. This will be subject of future research.

A Higher order NWI approximations

In this section we explain how to construct higher order NWI respectively
NLS approximations for (11) in case N = 1, basic wave number k∗ = k̃3,
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and 2π/k∗-periodic boundary conditions, cf. (7). In order to achieve for the
residual terms

Res(εψβ) = O(εβ),

where Res(u) = −∂2
t u+ ω2(∂x)u+ u2, we choose

εψβ =
∑

|m|=1,2,...,2N+1

β̃(m)∑
n=1

εα(m)+nAmn(T )Em,

with N and β̃(m) sufficiently big, where E = ei(k∗x+ω3t), α(m) = ||m| − 1|,
and T = ε2t. As before A11 satisfies the NWI equation (16), the A1n for n ≥ 2
linearized NWI equations, and the Amn form 6= ±1 algebraic equations which
can be solved w.r.t. Amn, since mω(k∗) 6= ω(mk∗) for all m ∈ N \ {−1, 1}.
The estimates for the residual are trivial and follow line for line the estimates
of the non-periodic situation, cf. [SU17, §11], where in the spatially periodic
case all expansions of curves of eigenvalues and kernels of nonlinear terms
can be skipped.

Remark A.1. We remark explicitly that the derivation of the NWI system
and the estimate for the residual on the natural NWI O(1/ε2)-time scale
are trivial. In contrast, in the approach used in [SSZ15] an extended TWI
approximation system has to be constructed whose validity has to be shown
beyond the natural O(1/ε) TWI time scale. This turned out to be highly
non-trivial.
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