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Abstract

We consider dispersive systems of the form

∂tU = ΛUU +BU (U, V ), ε∂tV = ΛV V +BV (U,U)

in the singular limit ε → 0, where ΛU ,ΛV are linear and BU , BV bilinear mappings.
We are interested in deriving error estimates for the approximation obtained through
the regular limit system

∂tψU = ΛUψU −BU (ψU ,Λ
−1
V BV (ψU , ψU ))

from a more general point of view. Our abstract approximation theorem applies to
a number of semilinear systems, such as the Dirac-Klein-Gordon system, the Klein-
Gordon-Zakharov system, and a mean field polaron model. It extracts the common
features of scattered results in the literature, but also gains an approximation result
for the Dirac-Klein-Gordon system which has not been documented in the literature
before. We explain that our abstract approximation theorem is sharp in the sense
that there exists a quasilinear system of the same structure where the regular limit
system makes wrong predictions.

1 Introduction

What have the following systems, where 0 < ε � 1 is a small parameter, in common?
Written as first order systems,
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• the Dirac-Klein-Gordon (DKG) system, cf. Section 3.1,

−iγ0∂tu− i
3∑

µ=1

γµ∂xµu+muu = vu, ε2∂2
t v = ∆v −m2

vv + uτγ0u, (1)

• the Klein-Gordon-Zakharov (KGZ) system, cf. Section 3.2,

∂2
t u = ∆u− u− γuv, ε2∂2

t v = ∆v + ∆(|u|2), (2)

• the mean field polaron model, cf. Section 3.3,

i∂tu = ∆u− γuv, ε2∂2
t v = −v + ∆−1(|u|2), (3)

• and the Zakharov system, cf. Section 4.2,

i∂tu = −∆u− γvu, ε2∂2
t v = ∆v + ∆|u|2, (4)

are all of the form

∂tU = ΛUU +BU(U, V ), ε∂tV = ΛV V +BV (U,U), (5)

where ΛU ,ΛV are linear and BU , BV bilinear mappings. Moreover, in the singular limit
ε→ 0 effective equations for the slow dynamics occur, namely

• the Dirac-Hartree equation

−iγ0∂tu− i
3∑

µ=1

γµ∂xµu+muu = ((−∆ +m2
v)
−1(uτγ0u))u (6)

for the DKG system,

• the Klein-Gordon equation

∂2
t u = ∆u− u− γu|u|2 (7)

for the KGZ system,

• the Hartree equation
i∂tu = ∆u− γu∆−1(|u|2) (8)

for the mean field polaron model,

• the NLS equation
i∂tu = −∆u+ γ|u|2u (9)

for the Zakharov system,
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and
∂tψU = ΛUψU −BU(ψU , ψV ), with ψV = Λ−1

V BV (ψU , ψU) (10)

for the abstract system (5).
It is the goal of this paper to discuss the validity of the following approximation result

(formulated for (5)) for this class of dispersive systems from a more general point of view.

Theorem 1.1. Let Xψ, XU , and XV be suitably chosen Banach spaces, and let ψU ∈
C([0, T0], Xψ) be a solution of (10). Then there exist ε0 > 0 and C > 0 such that for all
ε ∈ (0, ε0) we have solutions (U, V ) of (5) with

sup
t∈[0,T0]

(‖U − ψU‖XU + ‖V − ψV ‖XV ) ≤ Cε.

At a first view such error estimates are a non-trivial task since in the equivalent formu-
lation

∂tU = ΛUU +BU(U, V ), ∂tV = ε−1ΛV V + ε−1BV (U,U), (11)

in the V -equation there are terms of order O(ε−1) on the right hand side which can lead to
growth rates of order O(eε

−1t) and which would make it impossible to prove the bounds for
the error on an O(1) time scale.

At a second view one finds such approximation results scattered in the literature, for the
KGZ system in [DSS16], for the mean field polaron model in [GSS17], and for the Zakharov
system for instance in [SW86, AA88]. In fact the underlying idea to prove such approxima-
tion results is rather simple. We eliminate the dangerous nonlinear term ε−1BV (U,U) by
the change of coordinates

W = V +M(U,U), with M(U,U) = Λ−1
V BV (U,U). (12)

We find

∂tU = ΛUU +BU(U,W − Λ−1
V BV (U,U)),

∂tW = ε−1ΛVW + 2M(ΛUU +BU(U,W − Λ−1
V BV (U,U)), U).

(13)

If ΛV is the generator of a uniformly bounded semigroup, for the transformed system (13),
by a simple application of Gronwall’s inequality, the required estimates can be obtained.
Hence, it is the first goal of this paper to show that the scattered results in the literature
can be handled all with the same abstract approximation theorem and that it also applies to
the DKG system (1) to Dirac-Hartree limit (6) which has not been handled in the literature
before.

At a third view, however, it turns out that the problem is more subtle. Although the
Zakharov system (4) formally falls into this class of systems of the form (5), it cannot
be handled with our abstract approximation result. In fact, it is not a technical problem.
Using the resonances of the system we really construct a counter example which shows that,
in case of a ’wrong’ sign in the nonlinearity of (4), the NLS approximation fails to make
correct predictions. Therefore, it is the second goal of this paper to extract the reasons
why for the first three systems (1)-(3) the limit systems (6)-(8) make correct predictions
independently of the sign of the nonlinearity and why for the fourth system (4) the sign of
the nonlinearity plays an essential role.
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Remark 1.2. Systems with the same interaction structure in the nonlinear terms, i.e.,

∂tU = . . .+BU(U, V ), ε∂tV = . . .+BV (U,U)

occur in various situations. The first class of examples are coupled quantum mechanical
systems such as (1)-(3). Other examples in this class are the Klein-Gordon-Schödinger
system with Yukawa coupling, cf. [FT75] or the perturbed Zakharov system considered
in [BBC96]. The argument with the change of coordinates (12) still works if the bilinear
mappingBU(U, V ) is replaced by a general nonlinearity FU(U, V ) and if the bilinear mapping
BV (U,U) is replaced by a general nonlinearity FV (U). Essential is that the nonlinear terms
in the V -equation only depend on U . This generalized interaction structure also occurs in
coupled amplitude systems describing long-short wave interactions or slow-fast oscillations.
Examples can be found for instance in [MN05, SZ13].

Remark 1.3. General slow-fast systems

∂tu = f(u, v), ε∂tv = g(u, v)

play a big role in applications. In the ODE case, with the geometric singular perturbation
theory, cf. [Fen79, JK94], there exist powerful tools to analyze such systems. For a recent
overview see [Kue15].

The plan of this paper is as follows. In Section 2 we present an abstract approximation
result for dispersive systems of the form (5). The approximation result is used in Section
3.1 to prove the validity of the Dirac-Hartree approximation (6) for the DKG system (1),
in Section 3.2 to prove the validity of the Klein-Gordon approximation (7) for the KGZ
system (2), and in Section 3.3 to prove the validity of the Hartree approximation (8) for
the high frequency limit of a mean field polaron model (3). In Section 4.2 we explain that
although the NLS approximation limit for the (quasilinear) Zakharov system is of the above
abstract form the validity analysis is different. In Section 4.3 we use the resonances of the
original systems to construct solutions which grow in time. We explain why these growing
solutions for the systems (1)-(3) do not contradict the previous approximation results, but
why on the other hand these growing solutions allow to construct the above mentioned
counter example for the system of Section 4.2. This discussion is illustrated by numerical
experiments in Section 4.4.

Notation. Constants which can be chosen independently of the small perturbation
parameter 0 < ε � 1 are denoted with the same symbol C. We write

∫
for

∫
Rd . The

Fourier transform of a function u is denoted with û. We introduce the norm ‖ · ‖L2
s

by

‖û‖2
L2
s

=

∫
|û(k)|2(1 + |k|2)sdk

and define the Sobolev norm ‖u‖Hs = ‖û‖L2
s
, but use equivalent versions, too. Sometimes

we use the short-hand notation ‖f(k)‖Lp(dk) for ‖k 7→ f(k)‖Lp .
Acknowledgement. The paper is partially supported by the Deutsche Forschungsge-

meinschaft DFG through the SFB 1173 ”Wave phenomena”.
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2 The abstract approximation theorem

For the system

∂tU = ΛUU +BU(U, V ), ε∂tV = ΛV V +BV (U,U), (14)

with 0 ≤ ε� 1 a small perturbation parameter, we pose a number of assumptions.

(S1) The operator ΛU is the generator of a strongly continuous group (eΛU t)t∈R in some
Banach space XU . The group is uniformly bounded, i.e., there exists a constant
CΛ > 0 such that ‖eΛU t‖XU→XU ≤ CΛ for all t ∈ R.

(S2) Similarly, ΛV is the generator of a strongly continuous group (eΛV t)t∈R in some Banach
space XV satisfying ‖eΛV t‖XV→XV ≤ CΛ for all t ∈ R.

(B1) For the bilinear mapping BU : XU ×XV → XU there exists a CB such that

‖BU(U, V )‖XU ≤ CB‖U‖XU‖V ‖XV

for all U ∈ XU and V ∈ XV .

(B2) For the bilinear mapping BV : XU ×XU → XV there exists a CB such that

‖BV (U, Ũ)‖XV ≤ CB‖U‖XU‖Ũ‖XU

for all U, Ũ ∈ XU .

In the singular limit ε→ 0 we have the regular system

∂tψU = ΛUψU +BU(ψU , ψV ), 0 = ΛV ψV +BV (ψU , ψU). (15)

We assume that

(I) The bilinear mapping Λ−1
V BV (·, ·) : XU ×XU → XV exists and there exists a CI such

that
‖Λ−1

V BV (U, Ũ)‖XV ≤ CI‖U‖XU‖Ũ‖XU
for all U, Ũ ∈ XU .

Inserting ψV = −Λ−1
V BV (ψU , ψU) into the equation for ψU gives the regular limit system

∂tψU = ΛUψU −BU(ψU ,Λ
−1
V BV (ψU , ψU)). (16)

In order to prove that ψU makes correct predictions about the dynamics of (14) for ε >
0 small, we follow the ideas explained in the introduction. We eliminate the dangerous
nonlinear term ε−1BV (U,U) by a change of coordinates

W = V +M(U,U), with M(U,U) = Λ−1
V BV (U,U).

5



By assumption (I) the bilinear mapping M(·, ·) : XU ×XU → XV exists and there exists a
CI such that

‖M(U, Ũ)‖XV ≤ CI‖U‖XU‖Ũ‖XU (17)

for all U, Ũ ∈ XU . We find

∂tW = ∂tV +M(∂tU,U) +M(U, ∂tU)

= ε−1ΛV V + ε−1BV (U,U) + 2M(ΛUU +BU(U, V ), U)

= ε−1ΛVW + 2M(ΛUU +BU(U, V ), U)

such that after the transformation

∂tU = ΛUU +BU(U,W − Λ−1
V BV (U,U)),

∂tW = ε−1ΛVW + 2M(ΛUU +BU(U,W − Λ−1
V BV (U,U)), U).

(18)

For obtaining local existence and uniqueness of this system we additionally assume that

(M) The bilinear mapping M(ΛU ·, ·) : XU ×XU → XV exists and there exists a CI such
that

‖M(ΛUU, Ũ)‖XV ≤ CI‖U‖XU‖Ũ‖XU
for all U, Ũ ∈ XU .

As before the limit system is given by

∂tψU = ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψW = 0. (19)

The formal error made by inserting the approximation ψU and ψW into (18) can be measured
by the residuals

ResU(U,W ) = −∂tU + ΛUU +BU(U,W − Λ−1
V BV (U,U)),

ResW (U,W ) = −∂tW + ε−1ΛVW

+2M(ΛUU +BU(U,W − Λ−1
V BV (U,U)), U).

(20)

For the approximations ψU and ψW we find

ResU(ψU , 0) = 0, ResW (ψU , 0) = 2M(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU).

By posing additional assumptions on ΛU , ΛV , BU , and BV it can be proven that ResW (ψU , 0)
can be bounded independently of 0 < ε � 1. However, in order to keep the number of
assumptions on a reasonable level and to be more flexible for the subsequent applications
we assume the following for the residual terms.
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(Res) Let ψU ∈ C([0, T0], Xψ) be a solution of (16) with Xψ ⊂ XU another suitably chosen
Banach space. Then there exists a Cres > 0 such that for all ε ∈ (0, 1] we have

sup
t∈[0,T0]

‖ResW (ψU , 0)‖XV ≤ Cres, sup
t∈[0,T0]

‖Λ−1
V ResW (ψU , 0)‖XV ≤ Cres,

and
sup

t∈[0,T0]

‖Λ−1
V ∂tResW (ψU , 0)‖XV ≤ Cres.

Our abstract approximation result is as follows.

Theorem 2.1. Assume the validity of (S1), (S2), (B1), (B2), (I), (M), and (Res). Let
ψU ∈ C([0, T0], Xψ) be a solution of (16). Then there exist ε0 > 0 and CU > 0 such that
for all ε ∈ (0, ε0) we have solutions (U,W ) of (18) with

sup
t∈[0,T0]

(‖U − ψU‖XU + ‖W‖XV ) ≤ Cε,

respectively, (U, V ) of (14) with

sup
t∈[0,T0]

(‖U − ψU‖XU + ‖V − ψV ‖XV ) ≤ Cε.

Proof. We introduce

NU(Z) = BU(U,W − Λ−1
V BV (U,U)),

NW (Z) = 2M(ΛUU +BU(U,W − Λ−1
V BV (U,U)), U),

where Z = (U,W ), such that (18) can be written as

∂tU = ΛUU +NU(Z), ∂tW = ε−1ΛVW +NW (Z). (21)

The error εR = ε(RU , RV ) = Z − ψZ made by the approximation ψZ = (ψU , ψW ) satisfies

∂tRU = ΛURU + ε−1(NU(ψZ + εR)−NU(ψZ)),

∂tRW = ε−1ΛVRW + ε−1(NW (ψZ + εR)−NW (ψZ)) + ε−1ResW (ψZ).
(22)

In order to estimate the error R we consider the variation of constant formula

RU(t) =
∫ t

0
eΛU (t−τ)ε−1(NU(ψZ + εR)−NU(ψZ))(τ)dτ,

RW (t) =
∫ t

0
eε
−1ΛV (t−τ)ε−1(NW (ψZ + εR)−NW (ψZ))(τ)dτ + s1,

(23)

where

s1 = ε−1

∫ t

0

eε
−1ΛV (t−τ)ResW (ψU , 0)(τ)dτ
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The factor ε−1 in s1 can be removed by integration by parts, namely

s1 = eε
−1ΛV (t−τ)Λ−1

V ResW (ψU , 0)(τ)
∣∣t
τ=0

+

∫ t

0

eε
−1ΛV (t−τ)Λ−1

V ∂τResW (ψU , 0)(τ)dτ.

The terms occurring in (23) can be estimated by using the assumptions (S1), (S2), (Res),
and the following lemma.

Lemma 2.2. For all Cψ > 0 there exist constants C1, . . . , C4 such that if ‖ψZ‖XZ ≤ Cψ,
then

‖ε−1(NU(ψZ + εR)−NU(ψZ)‖XU + ‖ε−1(NW (ψZ + εR)−NW (ψZ)‖XV
≤ C1‖R‖XZ + C2ε‖R‖2

XZ
+ C3ε

2‖R‖3
XZ

+ C4ε
3‖R‖4

XZ
,

where ‖(U, V )‖XZ = ‖U‖XU + ‖V ‖XV .

Proof. The nonlinearities NU and NW are compositions of bilinear mappings satis-
fying the estimates from (B1), (B2), (I), (M), and (17). Expanding the corresponding
expressions immediately gives the desired estimates.

Introducing
S(t) = sup

τ∈[0,t]

‖R(τ)‖XZ

yields the estimate

S(t) ≤
∫ t

0

CΛ(C1S(τ) + C2εS(τ)2 + C3ε
2S(τ)3 + C4ε

3S(τ)4 + 2Cres)dτ.

For
C2εS(τ)2 + C3ε

2S(τ)3 + C4ε
3S(τ)4 ≤ 1

we find

S(t) ≤
∫ t

0

CΛ(C1S(τ) + 1 + 2Cres)dτ.

Gronwall’s inequality then shows

S(t) ≤ (1 + 2Cres)te
CΛC1t ≤ (1 + 2Cres)T0e

CΛC1T0 =: M.

Choosing finally ε0 > 0 so small that

C2ε0M
2 + C3ε

2
0M

3 + C4ε
3
0M

4 ≤ 1,

we are done.

8



Remark 2.3. It is obvious that the previous arguments still work for systems, with general
nonlinearities FU and FV , of the form

∂tU = ΛUU + FU(U, V ), ε∂tV = ΛV V + FV (U),

with associated limit system

∂tψU = ΛUψU − FU(ψU ,Λ
−1
V FV (ψU)),

if we assume a certain smoothness of FU : XU ×XV → XU , FV : XU → XV , and adapt the
assumptions (B1), (B2), (I), and (M).

3 Applications

From a functional-analytical point of view the proof of the above approximation theorem
is not difficult. The difficulties are transferred to the application of the theorem and are
discussed below for the first three examples of the introduction.

3.1 The Dirac-Hartree approximation for the DKG system

The Dirac-Klein-Gordon system is used as a model for proton-proton interactions where
one proton is scattered in a meson field, cf. [BH17]. It is given by

−iγ0∂tu− i
3∑

µ=1

γµ∂xµu+muu = vu, ε2∂2
t v = ∆v −m2

vv + uτγ0u, (24)

with t ∈ R, x ∈ R3, and describes a vector field u(x, t) ∈ C4 and a scalar field v(x, t) ∈ R.
We have the small perturbation parameter 0 ≤ ε � 1, the masses mu,mv > 0, the Dirac
matrices γµ ∈ C4×4 with

γ0 =

(
I2 0
0 −I2

)
, γj =

(
0 σj

−σj 0

)
for j = 1, 2, 3, and the Pauli matrices σj ∈ C2×2 with

I2 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

u is called a spinor field and uτ is the transposed vector associated to u.
It is the goal of this section to explain that the singular limit ε→ 0 of the DKG system,

where we obtain the Dirac-Hartree equation

−iγ0∂tu− i
3∑

µ=1

γµ∂xµu+muu = ((−∆ +m2
v)
−1(uτγ0u))u (25)
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as limit system, is covered by Theorem 2.1. In order to do so, we write (24) as a first order
system

∂tu = −
3∑

µ=1

γ0γµ∂µu− imuγ
0u+ iγ0vu,

∂tv = ε−1iωvṽ,

∂tṽ = ε−1iωvv − ε−1 1

iωv
uτγ0u,

where ωv and 1/ωv are defined via their symbols in Fourier space

ω̂v(k) =
√
|k|2 +m2

v and 1/ω̂v(k).

In order to apply our abstract approximation result from Section 2 we set U = u, V = (v, ṽ),
and

ΛU = −
3∑

µ=1

γ0γµ∂µ − imuγ
0, ΛV =

(
0 iωv
iωv 0

)
for the linear operators. For the nonlinear terms we choose

BU(U, V ) = iγ0vu, BV (U,U) =

(
0

− 1
iωv
uτγ0u

)
.

Finally, the Banach spaces XU and XV are given by the Sobolev spaces XU = (Hs)4 and
XV = Hs which are closed under multiplication for s > 3/2 due to Sobolev’s embedding
theorem.

We are now going to check the assumptions of Theorem 2.1. The validity of the assump-
tions (S1), (S2), (B1), and (B2) is obvious. We have for instance

‖eΛU tU‖Hs = ‖eΛ̂U tÛ‖L2
s
≤ ‖eΛ̂U t‖L∞‖Û‖L2

s
≤ ‖U‖Hs

or

‖BV (U,U)‖Hs =

∥∥∥∥ 1

iωv
uτγ0u

∥∥∥∥
L2
s

≤
∥∥∥∥ 1

ω̂v(k)

∥∥∥∥
L∞(dk)

‖ûτγ0u‖L2
s

≤ C‖uτγ0u‖Hs ≤ C‖U‖2
Hs .

For checking the assumption (I) we first note that

Λ−1
V BV (U1, U2) = −1

2

(
0 iωv
iωv 0

)−1(
0

1
iωv

(ut1γ
0u2 + ut2γ

0u1)

)
.

such that

‖M(U1, U2)‖Hs+2 = ‖Λ−1
V BV (U1, U2)‖Hs+2 ≤ C‖U1‖Hs‖U2‖Hs
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which is better than what is actually needed for (I). The validity of the assumption (M)
follows from

‖M(ΛUU1, U2)‖Hs+1 ≤ C‖ΛUU1‖Hs−1‖U2‖Hs−1 ≤ C‖U1‖Hs‖U2‖Hs−1 .

We obtain for the residual, first

‖ResW (ψU , 0)‖Hs = 2‖M(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs

≤ C(‖M(ΛUψU , ψU)‖Hs + ‖M(BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs)

≤ C‖ΛUψU‖Hs−2‖ψU‖Hs−2 + C‖BU(ψU ,−Λ−1
V BV (ψU , ψU))‖Hs−2‖ψU‖Hs−2

≤ C‖ψU‖Hs−1‖ψU‖Hs−2 + C‖ψU‖Hs−2‖ − Λ−1
V BV (ψU , ψU)‖Hs−2‖ψU‖Hs−2

≤ C‖ψU‖Hs−1‖ψU‖Hs−2 + C‖ψU‖Hs−2‖ψU‖2
Hs−4‖ψU‖Hs−2 .

Since Λ−1
V gains one derivative we have next

‖Λ−1
V ResW (ψU , 0)‖Hs ≤ C‖ψU‖Hs−2‖ψU‖Hs−3 + C‖ψU‖Hs−3‖ψU‖2

Hs−5‖ψU‖Hs−3 . (26)

Finally, for the same reason we find

‖Λ−1
V ∂tResW (ψU , 0)‖Hs

≤ C‖∂tM(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs−1

≤ C(‖M(ΛU∂tψU , ψU)‖Hs−1 + ‖M(ΛUψU , ∂tψU)‖Hs−1

+‖M(BU(∂tψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs−1

+2‖M(BU(ψU ,−Λ−1
V BV (∂tψU , ψU)), ψU)‖Hs−1

+‖M(BU(ψU ,−Λ−1
V BV (ψU , ψU)), ∂tψU)‖Hs−1).

Replacing then ∂tψU by the right-hand side of (19) allows to estimate all terms in terms
of Hs-norms of ψU . The term losing most derivatives – namely two – is ΛU∂tψU . Since we
gained two derivatives in (26) also the third estimate of (Res) can be obtained by choosing
ψU ∈ Hs = Xψ = XU .

Thus we checked all assumptions of Theorem 2.1 and so we have

Theorem 3.1. Let ψu ∈ C([0, T0], Hs) be a solution of (25) for an s > 3/2. Then there
exist ε0 > 0 and CU > 0 such that for all ε ∈ (0, ε0) we have solutions (u, v) of (24) with

sup
t∈[0,T0]

(‖u− ψu‖Hs + ‖v − ψv‖Hs) ≤ Cε,

where ψv = (−∆ +m2
v)
−1(ψ

τ

uγ
0ψu).

3.2 The Klein-Gordon approximation for the KGZ system

We consider the Klein-Gordon (KG) limit of the Klein-Gordon-Zakharov (KGZ) system,
i.e., we consider

∂2
t u = ∆u− u− γuv, ε2∂2

t v = ∆v + ∆(|u|2), (27)

11



with γ = ±1, t ≥ 0, x, u(x, t) ∈ R3, and v(x, t) ∈ R, for small 0 ≤ ε � 1. In the limit
ε→ 0 we obtain the regular limit system, namely the KG equation

∂2
t u = ∆u− u+ γ |u|2 u. (28)

The KGZ system occurs as a model in plasma physics where it describes the interaction
between so called Langmuir waves and ion sound waves via some ion density fluctuation
v and the electric field u, cf. [MN05]. Error estimates that the KG equation or a slightly
modified KG equation make correct predictions about the dynamics of the KGZ system for
small ε > 0 can be found in [DSS16] in case of periodic boundary conditions. It is the goal
of this section to explain that this singular limit of the KGZ system is covered by Theorem
2.1.

In order to do so we write (27) as a first order system

∂tu = iωuũ,

∂tũ = iωuu−
γ

iωu
uv,

∂tv = ε−1iωvṽ,

∂tṽ = ε−1iωvv + ε−1iωv |u|2 ,

where ωu, 1/ωu and ωv are defined via their symbols in Fourier space

ω̂u(k) =
√
|k|2 + 1 and ω̂v(k) = |k|.

In order to apply our abstract approximation result from Section 2 we set U = (u, ũ),
V = (v, ṽ), and

ΛU =

(
0 iωu
iωu 0

)
, ΛV =

(
0 iωv
iωv 0

)
for the linear operators. For the nonlinear terms we choose

BU(U, V ) =

(
0

− γ
iωu
uv

)
, BV (U,U) =

(
0

iωv(|u|2)

)
.

Finally, the Banach spaces XU and XV are given by the Sobolev spaces XU = Hs+1 and
XV = Hs with s ≥ 1. We are now going to check the assumptions of Theorem 2.1. As
is Section 3.1 the validity of the assumptions (S1), (S2), (B1), and (B2) is obvious. We
have for instance

‖BU(U, V )‖Hs+1 =

∥∥∥∥ γ

iωu
ûv

∥∥∥∥
L2
s+1

≤
∥∥∥∥(1 + k2)1/2

ω̂u(k)

∥∥∥∥
L∞(dk)

‖ûv‖L2
s

≤ C‖uv‖Hs ≤ C‖U‖Hs‖V ‖Hs ≤ C‖U‖Hs+1‖V ‖Hs .

For checking the assumption (I) we first note that

Λ−1
V BV (U1, U2) =

(
u1 · u2

0

)
.

12



such that

‖Λ−1
V BV (U1, U2)‖Hs ≤ C‖U1‖Hs‖U2‖Hs

which is better than what is actually needed for (I). The validity of the assumption (M)
follows from

‖M(ΛUU1, U2)‖Hs ≤ C‖ΛUU1‖Hs‖U2‖Hs ≤ C‖U1‖Hs+1‖U2‖Hs .

Checking the assumption (Res) is less trivial and depends on whether we consider the
KGZ system in R3 or with periodic boundary conditions, cf. [DSS16]. This distinction
plays no role for

‖ResW (ψU , 0)‖Hs = 2‖M(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs

≤ C(‖M(ΛUψU , ψU)‖Hs + ‖M(BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs)

≤ C‖ΛUψU‖Hs‖ψU‖Hs + C‖BU(ψU ,−Λ−1
V BV (ψU , ψU))‖Hs‖ψU‖Hs

≤ C‖ψU‖Hs+1‖ψU‖Hs + C‖ψU‖Hs−1‖ − Λ−1
V BV (ψU , ψU)‖Hs−1‖ψU‖Hs

≤ C‖ψU‖Hs+1‖ψU‖Hs + C‖ψU‖Hs−1‖ψU‖2
Hs−1‖ψU‖Hs .

However, for the time derivative both cases have to be treated differently. For the periodic
case we refer to [DSS16] and restrict ourselves here to x ∈ R3. We use

Lemma 3.2. For x ∈ R3 the operator Λ−1
V is invertible from Hs−1 ∩ L1 to Hs for s ≥ 1,

i.e., there exists a C > 0 such that

‖Λ−1
V V ‖Hs ≤ C‖V ‖Hs−1∩L1 .

Proof. Since

‖Λ−1
V V ‖L2 ≤ C‖|k|−1V̂ (k)‖L2(dk)

≤ C(‖χ|k|≤1(k)|k|−1V̂ (k)‖L2(dk) + ‖χ|k|>1(k)|k|−1V̂ (k)‖L2(dk))

≤ C(‖χ|k|≤1(k)|k|−1‖L2(dk)‖V̂ (k)‖L∞(dk)

+‖χ|k|>1(k)|k|−1‖L∞(dk)‖V̂ (k)‖L2(dk))

≤ C(‖χ|k|≤1(k)|k|−1‖L2(dk)‖V ‖L1 + ‖V ‖L2)

and since

‖χ|k|≤1(k)|k|−1‖2
L2(dk) =

∫
|k|≤1

|k|−2dk = Cd

∫ 1

0

rd−3dr <∞

for d ≥ 3, the operator ΛV can be inverted from L1 ∩L2 to L2 if d ≥ 3. For the derivatives
no singularity at k = 0 occurs and the estimates follow in a trivial way.

Since ResW (ψU , 0) contains only terms which are at least quadratic, by the Cauchy-
Schwarz inequality we not only have that ‖ResW (ψU , 0)‖Hs is bounded for ψU in Hs+1, but
also that ‖ResW (ψU , 0)‖Hs∩L1 is bounded. Hence, applying Lemma 3.2 shows

‖Λ−1
V ResW (ψU , 0)‖Hs ≤ C‖ψU‖Hs+1‖ψU‖Hs + C‖ψU‖Hs−1‖ψU‖2

Hs−1‖ψU‖Hs .

13



Finally, we find

‖Λ−1
V ∂tResW (ψU , 0)‖Hs

≤ C‖∂tM(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs−1∩L1

≤ C(‖M(ΛU∂tψU , ψU)‖Hs−1∩L1 + ‖M(ΛUψU , ∂tψU)‖Hs−1∩L1

+‖M(BU(∂tψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖Hs−1∩L1

+2‖M(BU(ψU ,−Λ−1
V BV (∂tψU , ψU)), ψU)‖Hs−1∩L1

+‖M(BU(ψU ,−Λ−1
V BV (ψU , ψU)), ∂tψU)‖Hs−1∩L1)

Replacing then ∂tψU by the right-hand side of (19) allows to estimate all terms in terms
of Hs-norms of ψU . The term losing most derivatives – namely two – is ΛU∂tψU such that
also the third estimate of (Res) can be obtained by choosing ψU ∈ Hs+1 = Xψ = XU .
The L1-estimate follows again from the Cauchy-Schwarz inequality. Thus we checked all
assumptions of Theorem 2.1 and so we have

Theorem 3.3. Let ψu ∈ C([0, T0], Hs+1) be a solution of (28) for an s > 3/2. Then there
exist ε0 > 0 and CU > 0 such that for all ε ∈ (0, ε0) we have solutions (u, v) of (27) with

sup
t∈[0,T0]

(‖u− ψu‖Hs+1 + ‖v + |ψu|2‖Hs) ≤ Cε.

3.3 The high frequency limit of a mean field polaron model

We consider the high frequency limit of a mean field polaron model [BNAS00], i.e., we
consider

i∂tu = ∆u− γuv, ε2∂2
t v = −v + ∆−1(|u|2), (29)

with γ = ±1, t ≥ 0, x ∈ R3, v(x, t) ∈ R, and u(x, t) ∈ C for small 0 ≤ ε � 1. This
model describes a free electron interacting with a dielectric polarizable continuum under a
number of assumptions. The evolution of the lattice polarization is modelled as a harmonic
oscillator, described by the electrostatic potential v = v(x, t) ∈ R, subject to an external
force coming from the single electron, which is described by its wave function u = u(x, t) ∈
C. In the limit ε→ 0 we obtain the Hartree equation

i∂tu = ∆u− γu(∆−1(|u|2) (30)

as regular limit system. It is the goal of this section to explain that this singular limit of
the mean field polaron model is covered by Theorem 2.1.

In order to do so, we write (29) as a first order system

i∂tu = ∆u− γuv,
∂tv = iε−1ṽ,

∂tṽ = iε−1v + iε−1∆−1(|u|2).

14



In order to apply our abstract approximation result from Section 2 we set U = u, V = (v, ṽ),
and

ΛU = −i∆, ΛV =

(
0 i
i 0

)
for the linear operators. For the nonlinear terms we choose

BU(U, V ) = −γuv, BV (U,U) =

(
0

i∆−1(|u|2)

)
.

Finally, the Banach spaces XU and XV are given by the Sobolev spaces

XU = Hs, XV = L∞ ∩Hs
≥1

with s ≥ 1 where

‖V ‖XV = ‖V ‖L∞ +
s∑
|k|=1

‖∇kV ‖L2 .

We are now going to check the previous assumptions. The validity of the assumptions (S1),
(S2), and (B1) is obvious. We have for instance

‖eΛU tU‖Hs = ‖eΛ̂U tÛ‖L2
s
≤ ‖eΛ̂U t‖L∞‖Û‖L2

s
≤ ‖U‖Hs

and

‖BU(U, V )‖Hs = ‖γuv‖Hs ≤ C‖U‖Hs‖V ‖Hs

for s > 3/2 due to Sobolev’s embedding theorem. The assumption (B2) follows by

‖BV (U, Ũ)‖L∞∩Hs
≥1
≤ ‖|k|−2(̂|uũ|)‖L1∩L2

s
≤ C‖(̂|uũ|)‖L2

r∩L∞

≤ C‖uũ‖Hr∩L1 ≤ C‖U‖Hr‖Ũ‖Hr

for r > max{s − 2, 3/2}, where the second estimate holds for d = 3, cf. [GSS17, Lemma
2.3]. It is based on

‖∆−1
V v‖L∞ ≤ C‖|k|−2v̂(k)‖L1(dk)

≤ C(‖χ|k|≤1(k)|k|−2v̂(k)‖L1(dk) + ‖χ|k|>1(k)|k|−2v̂(k)‖L1(dk))

≤ C(‖χ|k|≤1(k)|k|−2‖L1(dk)‖v̂(k)‖L∞(dk)

+‖χ|k|>1(k)|k|−2‖L2(dk)‖v̂(k)‖L2(dk))

≤ C(‖v‖L1 + ‖v‖L2)

where we used

‖χ|k|≤1(k)|k|−2‖L1(dk) =

∫
|k|≤1

|k|−2 dk = Cd

∫ 1

0

rd−3 dr <∞
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for d ≥ 3 and

‖χ|k|≥1(k)|k|−2‖2
L2(dk) =

∫
|k|≥1

|k|−4 dk = Cd

∫ ∞
1

rd−5 dr <∞

for d ≤ 3. Since Λ−1
V is a bounded operator the validity of assumption (I) is a direct

consequence of (B2), i.e., we have the estimate

‖Λ−1
V BV (U, Ũ)‖L∞∩Hs

≥1
≤ C‖U‖Hr‖Ũ‖Hr

for r > max{s− 2, 3/2}. The estimate is better than necessary for (I). The validity of the
assumption (M) follows from

‖M(ΛUU, Ũ)‖L∞∩Hs
≥1
≤ C‖ΛUU1‖Hr‖U2‖Hr ≤ C‖U1‖Hr+2‖U2‖Hr .

We find next

‖ResW (ψU , 0)‖L∞∩Hs
≥1

= 2‖M(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖L∞∩Hs

≥1

≤ C(‖M(ΛUψU , ψU)‖L∞∩Hs
≥1

+ ‖M(BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖L∞∩Hs

≥1
)

≤ C‖ΛUψU‖Hr‖ψU‖Hr + C‖BU(ψU ,−Λ−1
V BV (ψU , ψU))‖Hr‖ψU‖Hr

≤ C‖ψU‖Hr+2‖ψU‖Hr + C‖ψU‖Hr‖ − Λ−1
V BV (ψU , ψU)‖L∞∩Hr

≥1
‖ψU‖Hr

≤ C‖ψU‖Hr+2‖ψU‖Hr + C‖ψU‖Hr‖ψU‖2
H r̃‖ψU‖Hr .

for r > max{s− 2, 3/2} and r̃ > max{r− 2, 3/2}. Since Λ−1
V is a bounded operator we also

have

‖Λ−1
V ResW (ψU , 0)‖L∞∩Hs

≥1
≤ C‖ψU‖Hr+2‖ψU‖Hr + C‖ψU‖Hr‖ψU‖2

H r̃‖ψU‖Hr

for the same values of r and r̃. Finally, we have

‖Λ−1
V ∂tResW (ψU , 0)‖L∞∩Hs

≥1

≤ C‖∂tM(ΛUψU +BU(ψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖L∞∩Hs

≥1

≤ C(‖M(ΛU∂tψU , ψU)‖L∞∩Hs
≥1

+ ‖M(ΛUψU , ∂tψU)‖L∞∩Hs
≥1

+‖M(BU(∂tψU ,−Λ−1
V BV (ψU , ψU)), ψU)‖L∞∩Hs

≥1

+2‖M(BU(ψU ,−Λ−1
V BV (∂tψU , ψU)), ψU)‖L∞∩Hs

≥1

+‖M(BU(ψU ,−Λ−1
V BV (ψU , ψU)), ∂tψU)‖L∞∩Hs

≥1
)

Replacing then ∂tψU by the right-hand side of (19) allows to express all terms in terms of Hs-
norms of ψU . The term losing most derivatives – namely four – is ΛU∂tψU . SinceM gains two
derivatives the third estimate of (Res) can be obtained by choosing ψU ∈ Hs+2 = Xψ ⊂ XU .
Thus we checked all assumptions of Theorem 2.1 and so we have

Theorem 3.4. Let ψu ∈ C([0, T0], Hs+2) be a solution of (30) for an s > 3/2. Then there
exist ε0 > 0 and CU > 0 such that for all ε ∈ (0, ε0) we have solutions (u, v) of (29) with

sup
t∈[0,T0]

(‖u− ψu‖Hs + ‖v −∆−1(|ψu|2)‖L∞∩Hs
≥1

) ≤ Cε.
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4 Discussion

Our abstract approximation theorem applies to all semilinear systems of the structure (14)
which additionally satisfy the assumption (M). Here, we show that the assumptions of the
abstract theorem are sharp in the sense that there exists a quasilinear system of the same
structure where the regular limit system makes wrong predictions. Hence, it turns out that
this limit for non-semilinear systems in general is a rather subtle problem.

4.1 The singular limit and normal form transformations

In order to explain the difference between the systems (1)-(3) on the one hand and (4) on the
other hand we have to make a small detour to the theory of normal form transformations.

In order to do so we consider the simple ODE system

∂tu = iu+ iuv, ε∂tv = iv − iu2, (31)

with t ∈ R, u(t), v(t) ∈ C, and 0 ≤ ε� 1 a small perturbation parameter. In the singular
limit ε→ 0 the regular limit system

∂tψU = iψU + iψUψV , 0 = iψV − iψ2
U ,

and finally
∂tψU = iψU + iψ3

U (32)

is obtained. Although (31) falls into the class of systems (5) and although checking the
assumptions of Theorem 2.1 is rather trivial we redo the calculations from above, but this
time we collect the terms differently.

We make the transform
w = v + αu2, (33)

with the new variable w and a coefficient α ∈ C which has to be determined in such a way
that the dangerous term −iε−1u2 is eliminated. We find

∂tw = ∂tv + α(∂tu)u+ αu(∂tu)

= iε−1v − iε−1u2 + α(iu+ iuv)u+ αu(iu+ iuv)

= iε−1w + ((−λv + λu + λu)α− iε−1)u2 +O(1) +O(α),

where λu = i is the eigenvalue of the linearization of the u-equation, and λv = iε−1 is
the eigenvalue of the linearization of the v-equation. Hence, in order to eliminate the
nonlinear term −iε−1u2, i.e., in order to compute α, we need the validity of the non-
resonance condition

−λv + λu + λu 6= 0. (34)

If (34) is satisfied we can choose

α =
iε−1

−λv + λu + λu
=

iε−1

2i− iε−1
=

ε−1

2− ε−1
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which is O(1) for ε→ 0. After this transformation we have a system

∂tu = O(1), ∂tw = iε−1w +O(1) (35)

for which easily an O(1) bound for the error on the O(1) time scale can be obtained with
the help of the variation of constant formula and Gronwall’s inequality. The right-hand side
of (35) can be expressed solely in terms of u and w since the normal form (33) is invertible.

Obviously, as we have done in Section 2 it is not necessary to eliminate all the terms
proportional to u2 in order to obtain a system of the same form as (35). It is sufficient to
eliminate the O(ε−1) terms only by choosing α = −iε−1/λv = −1. This is exactly what we
used above and as a consequence for problems on the real axis we do not need the validity
of the non-resonance condition

−λv(k) + λu(k − l) + λu(l) 6= 0 (36)

for all Fourier wave numbers k, l ∈ R, but only the much simpler condition

−λv(k) 6= 0 (37)

for all Fourier wave numbers k ∈ R, which corresponds to the existence of Λ−1
V , respectively

the weaker assumption (I).
This observation is restricted to systems with this special nonlinear interaction structure.

We will use this correspondence to normal form transformations to construct the counter
example. An introduction to normal form transformations can be found in [SVM07]. In
the last years they have been used extensively in proving error estimates for the NLS
approximation, cf. [DLP+11, Sch16] for an overview.

Remark 4.1. We buy the simpler non-resonance condition (37) or the weaker assumption
(I) with the additional assumption (M) which is necessary to control the terms which
are O(1) and which are not eliminated by the simpler approach. As we have seen for the
relevant systems from Section 3 the assumption (M) is satisfied.

4.2 The NLS approximation for the Zakharov system

Another system which can be reformulated to have the structure of (14) is the Zakharov
system

i∂tu+ ∆u = −γvu, ε2∂2
t v −∆v = ∆|u|2, (38)

with γ = ±1, t, v(x, t) ∈ R, x ∈ Rd, u(x, t) ∈ C, and 0 < ε � 1 a small perturbation
parameter. In the limit ε→ 0 we obtain the regular limit system

i∂tu+ ∆u = −γvu, −v = |u|2, resp. i∂tu+ ∆u = γ|u|2u, (39)

which is a NLS equation. We proceed in the same way as in Section 3.2 for the KGZ system
and write (38) as a first order system

∂tu = i∆u+ iγuv,

∂tv = iε−1ωvṽ,

∂tṽ = iε−1ωvv + ε−1ωv(|u2|),
with ωv defined via its symbol in Fourier space ω̂v(k) = |k|.
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Remark 4.2. The Zakharov system is a reduced model obtained from the Klein-Gordon-
Zakharov (KGZ) system, considered in Section 3.2, cf. [CEGT04]. It can also be obtained
directly from Maxwell’s equations coupled with Euler’s equations [Tex07]. The Zakharov
system is a quasilinear system in the following sense. With the choice XU = Hs+1, XV = Hs

assumption (B1) would be violated. On the other hand, with the choice XU = Hs and
XV = Hs assumption (B2) would be violated, and so (38) cannot be solved with the
variation of constant formula in the above sense. Therefore, the assumptions of our abstract
approximation theorem, Theorem 2.1, cannot be satisfied.

In contrast to the semilinear systems of Section 3, where the sign of γ was irrelevant,
for the Zakharov system (38) an approximation property only holds if γ = 1. In fact in
Section 4.3 we construct a counter example which shows that in case of γ = −1 the NLS
approximation fails to make correct predictions. For numerical illustrations of this fact see
Section 4.4. Before we construct this counter example we make two additional remarks.

Remark 4.3. The Zakharov system (38) can be made semilinear [OT92] by introducing
the new variable w = ∂tu − iθu with θ > 0 suitably chosen. Then u can be reconstructed
via

∆u− θu = −iw − γvu. (40)

For a given v there exists a θ sufficiently big such that for (40) there exists a unique solution
u = u∗(w, v) where u is two times more regular than w and v. The second equation of (38)
is written as first order system

∂tv = ε−1∇q, ∂tq = ε−1∇v + ε−1∇|u|2 (41)

Since w = (∂t − iθ)u we can apply (∂t − iθ) to the first equation of (38) and find

i(∂t(∂t − iθ)u+ ∆(∂t − iθ)u = γ∂t(vu)− iθγvu

such that
i∂tw + ∆w = γwv + ε−1γu∇q.

The evolutionary system

∂tw = i∆w − iγwv − iε−1γu∗(w, v)∇q, (42)

∂tv = ε−1∇q, (43)

∂tq = ε−1∇v + ε−1∇|u∗(w, v)|2, (44)

for w, q, and v, is semilinear, if we choose w ∈ Hs−1 and v, q ∈ Hs which yields u∗ ∈ Hs+1.
However, the new semilinear system (42)-(44) is no longer of the form of our abstract system
(14).

Remark 4.4. For instance in [SW86, AA88] it has been shown that the NLS equation
makes correct predictions about the dynamics of the Zakharov system. We follow [AA88]
and sketch how the sign of γ enters the proof of an approximation result for the NLS limit
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for the Zakharov system. In detail, we explain how to obtain an O(1) bound on an O(1)
time scale for the solutions u, v of (38) in case γ = 1. We rewrite the Zakharov system as
a first order system

i∂tu+ ∆u = −γvu, ∂tv = ∇ · q, ε2∂tq = ∇v +∇|u|2.

We multiply the first equation with −iu and integrate this equation w.r.t. x. Adding the
complex conjugate gives

d

dt
‖u‖2

L2 = 0. (45)

We multiply the first equation with ∂tu and integrate this equation w.r.t. x. Adding the
complex conjugate gives

d

dt
‖∇u‖2

L2 = −
∫
γ(vu∂tu+ vu∂tu) dx. (46)

Multiplying the second equation with v, the third equation with q, and integrating both
equations w.r.t. x yields

d

dt
‖v‖2

L2 + ε2 d

dt
‖q‖2

L2 =

∫
q∇|u|2 dx = −

∫
|u|2∇ · q dx = −

∫
|u|2∂tv dx. (47)

Adding (45)-(47) yields in case γ = 1 that

d

dt
(‖u‖2

L2 + ‖∇u‖2
L2 + ‖v‖2

L2 + ε2‖q‖2
L2 +

∫
v|u|2 dx) = 0. (48)

For u, v sufficiently small, but O(1), the square root of the energy on the right-hand side
is equivalent to the H1 × L2 × L2-norm.

This idea has been used in [AA88] to justify the validity of the NLS approximation uapp.
The equations for the error Ru = u − uapp, Rv = v − |uapp|2 can be handled in the same
way if γ = 1, since q, which is scaled with ε in the energy, does not appear in the nonlinear
terms.

In case γ = −1 the term
∫

(vu∂tu+vu∂tu−|u|2∂tv) dx remains on the right-hand side of
(48). It cannot be estimated in terms of ‖u‖2

L2 + ‖∇u‖2
L2 + ‖v‖2

L2 + ε2‖q‖2
L2 . In Section 4.3

we explain that in case γ = −1 the NLS approximation fails to make correct predictions.

4.3 No counter examples and counter examples

In all models there are resonant wave numbers violating the non-resonance condition (36).
Depending on the sign of γ these resonances can be stable or unstable. In the unstable
case, i.e. γ = −1 in the models (1)-(4), exponentially growing modes occur. In this section
we explain why the unstable resonances for the semilinear systems from Sections 3.1-3.3
only lead to growth rates of O(1) in coincidence with our approximation theorem. These
growing modes cannot be used to construct a counter example, showing that the limit system
makes wrong predictions about the original system. Hence, the sign of the coefficient γ in

20



the nonlinear terms is irrelevant in accordance with our abstract approximation theorem,
Theorem 2.1.

However, we compute the growth rates of the resonant modes for the Zakharov system
to be of order O(e1/ε) in the unstable case. This growth allows us to construct a counter
example which shows that in case γ = −1 the NLS approximation fails to make correct
predictions.

a) b) c)

k

ωv

ωu

k

ωv

ωu

k
ωv

ωu

Figure 1: Graphical computation of the resonant wave numbers by intersection of k 7→ ωv(k)
and k 7→ ωu(0) + ωu(k). a) shows these curves for the system from Section 3.2, b) these
curves for the system from Section 3.3, and c) these curves for the system from Section 4.2.
The intersection points in a) are at (O(ε),O(1)), in b) at (O(1/

√
ε),O(1/ε)), and in c) at

(O(1/ε),O(1/ε2)).

4.3.1 The KGZ-KG limit

As an illustrative example for the semilinear case we consider the KGZ-KG limit from
Section 3.2. The non-resonance condition to eliminate the dangerous nonlinear terms
ε−2∆(|u|2) in (27) is given by

ω̂v(k)− ω̂u(k − l)− ω̂u(l) 6= 0 (49)

for all k, l ∈ R, where in the one-dimensional case we set ω̂v(k) = k. There are many reso-
nances. Since we already know from our previous analysis that the unstable resonances can
lead at most to O(1)-growth rates we refrain from a complete discussion of all resonances,
and for expository reasons we restrict ourselves to the special situation l = 0. Then the
non-resonance condition is given by

ωv(k)− ωu(0)− ωu(k) = ±k
ε
− 1−

√
1 + k2 6= 0 (50)

It is easy to see that the resonant wave numbers are given by k1 = ± 2ε
1−ε2 = O(ε). See

Figure 1a). In order to compute the dynamics of the resonant modes we make the ansatz

u(x, t) = A0(t)eiωu(0)t + εnA1(t)ei(k1x+ωu(k1)t) + c.c.,

v(x, t) = B0(t) + εnB1(t)ei(k1x+ωv(k1)t) + c.c.,
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for a n > 0 fixed, i.e., a small perturbation of the x-independent situation. The linear terms
cancel and so we find in lowest order

2iωu(0)∂tA0 = −γA0B0,

2iωu(k1)∂tA1 = −γ(A1B0 + A0B1),

ε2∂2
tB0 = 0,

2ε2iωv(k1)∂tB1 = −k2
1(A1A0).

For simplicity we restrict ourselves to the case B0|t=0 = 0. Then we find A0 = const. and
B0 = 0. We compute

2iωu(k1)∂2
tA1 = −γA0∂tB1 = −γA0

1

2ε2iωv(k1)
(−k2

1(A1A0)),

i.e.
∂2
tA1 = ΓA1 and ∂2

tB1 = ΓB1,

where

Γ = −γ |A0|2k2
1

4ε2ωu(k1)ωv(k1)
.

We have that Γ has the opposite sign of γ, due to ωu(k1)ωv(k1) > 0, and so for γ = −1
exponential growth occurs. Since k1 = O(ε), A0 = O(1), ωu(k1) = O(1), and ωv(k1) = O(1)
we have Γ = O(1). Thus, in accordance with Theorem 3.3, even in case γ = −1 the resonant
modes B1 stay O(1) bounded on the natural O(1)-time scale of (27).

4.3.2 The Zakharov-NLS limit

The non-resonance condition to eliminate the dangerous nonlinear terms ε−2∆(|u|2) in (38)
is given by (49), where again we restrict to the case l = 0, i.e., to the non-resonance
condition (50). It is easy to see that the resonant wave numbers k1 are of order O(1/ε). See
Figure 1c). In order to compute the dynamics of the resonant modes we make the ansatz

u(x, t) = A0(t)eiωu(0)t + εnA1(t)ei(k1x+ωu(k1)t) + c.c.,

v(x, t) = B0(t) + εnB1(t)ei(k1x+ωv(k1)t) + c.c.,

for a n > 0. The linear terms cancel and so we find in lowest order

i∂tA0 = −γA0B0,

i∂tA1 = −γ(A1B0 + A0B1),

ε2∂2
tB0 = 0,

2ε2iωv(k1)∂tB1 = −k2
1(A1A0).

For simplicity we restrict ourselves to the case B0|t=0 = 0. Then we find A0 = const. and
B0 = 0. A necessary condition that the NLS equation makes correct predictions is that B1

stays O(1)-bounded on an O(1)-time scale. We compute

i∂2
tA1 = −γA0∂tB1 = −γA0

1

2ε2iωv(k1)
(−k2

1(A1A0)),
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i.e.
∂2
tA1 = ΓA1 and ∂2

tB1 = ΓB1,

where

Γ = −γ |A0|2k2
1

2ε2ωv(k1)
.

We have that Γ and γ have opposite signs, due to ωv(k1) > 0, and so for γ = −1 exponential
growth occurs. Since k1 = O(1/ε), A0 = O(1), and ωv(k1) = O(1/ε2) we have Γ = O(1/ε2).
Hence in case γ = −1 the resonant modes grow as O(eε

−1t) which is not O(1) bounded on
the natural O(1)-time scale of (38). Thus, in case of γ = −1 the associated NLS equation
makes wrong predictions about the dynamics of the Zakharov system, cf Section 4.4.

4.4 Numerical illustrations

By numerical experiments we illustrate the differences between the approximation properties
occuring for the semilinear system from Section 3.2 and the ones for the quasilinear system
from Section 4.2.

4.4.1 The KGZ-KG limit

We choose 2π/k1-spatially periodic boundary conditions with k1 the resonant wave number
of order O(ε). Hence, the spatial domain grows as ε → 0. Moreover, due to the fact that
we consider a bounded interval with periodic boundary conditions the limit system has to
be modified. Instead of choosing v(x, t) = −u(x, t)2 we consider

v(x, t) = −u(x, t)2 + β(t) (51)

with β(t) chosen in such a way that
∫ 2π/k1

0
∂2
t v(x, t) dx = 0. In detail we choose

β(t) =
k1

2π

∫ 2π/k1

0

(−u(x, 0)2 + u(x, t)2) dx (52)

and u to satisfy the modified KG equation

∂2
t u−∆u+ u = −βu+ γ|u|2u. (53)

We refer to [DSS16] for details. As predicted by our analysis, the numerical experiments
show a comparable error for γ = 1 and γ = −1. See Figure 2.

4.4.2 The Zakharov-NLS limit

We choose 2π/k1-spatially periodic boundary conditions with k1 = 1/ε the resonant wave
number. Hence, the spatial domain shrinks as ε → 0. As predicted by our analysis, the
numerical experiments show that the NLS equation provides a good approximation for
γ = 1. However, in case γ = −1 the Zakharov system (38) behaves much faster in a
different way as predicted by the NLS approximation. See Figure 3.
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Figure 2: The L2-norm of the approximation error for u in case γ = 1 (red lower curve)
and in case γ = −1 (blue upper curve). The computations for the initial conditions u|t=0 =
1 + ε2 cos(k1x), ∂tu|t=0 = 0, v|t=0 = −u|2t=0, and ∂tv|t=0 = 0 confirm our analysis. The
error in case γ = −1 grows faster than in case γ = 1, but stays bounded and the unstable
resonance does not destroy the approximation property. The computations for ε = 0.1
were made with a split step method for 1024 Fourier modes. The time step was τref =
4.77 × 10−7 for the KGZ system and τlim = 4.88 × 10−4 for the KG equation. The lower
curve shows the oscillatory character for γ = 1. The right panel shows that beyond the
natural approximation interval the error in case γ = −1 finally will be of the same size as
the solution.
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Figure 3: The L2-norm of the approximation error for u in case γ = 1 (red lower curve) and
in case γ = −1 (blue upper curve). The computations for the initial conditions E|t=0 = 1,
n|t=0 = −1 + ε2 cos(k1x), and ∂tn|t=0 = 0 confirm our analysis. The error in case γ = −1
grows faster than in case γ = 1. The unstable resonance destroys the approximation
property since the error in case γ = −1 (blue upper curve) grows faster for smaller ε. The left
panel shows the case ε = 0.1 and the right panel the case ε = 0.05. The computations were
made with a split step method for 1024 Fourier modes. The time step was τref = 4.77×10−7

for the Zakharov system and τlim = 4.88× 10−4 for the NLS equation.
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A Local existence and uniqueness of the limit systems

For completeness we add the following local existence and uniqueness result for (16).

Theorem A.1. For all C0 > 0 there exists a T0 > 0 such that for all U0 ∈ XU with
‖U0‖XU ≤ C0 there exists a unique mild solution ψU ∈ C([0, T0], XU) of (16) with ψU |t=0 =
U0.

Proof. We consider the variation of constant formula

ψU(t) = eΛU tU0 −
∫ t

0

eΛU (t−τ)BU(ψU ,Λ
−1
V BV (ψU , ψU))(τ)dτ (54)

associated to (16). Due to the assumptions (S1), (B1), and (I), for all fixed C1 > 0 the
right-hand side of (54) is a contraction in a ball

{ψU ∈ C([0, T0], XU) : ‖ψU − eΛU tU0‖XU ≤ C1}

for a T0 > 0 sufficiently small. By the contraction mapping principle there is a unique
fixed point of the right-hand side of (54) which by definition is the unique mild solution
ψU ∈ C([0, T0], XU) of (16) with ψU |t=0 = U0.

Remark A.2. In one of the previous applications, for estimating the residual terms, we
used solutions ψU ∈ C([0, T0], Xψ) with Xψ ⊂ XU another suitably chosen Banach space.
The local existence and uniqueness proof in Xψ will work exactly the same since XU and
Xψ have been chosen as Sobolev spaces HsU and Hsψ with sU < sψ.
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