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WAVES OF MAXIMAL HEIGHT FOR A CLASS OF NONLOCAL

EQUATIONS WITH HOMOGENEOUS SYMBOLS

GABRIELE BRUELL AND RAJ NARAYAN DHARA

Abstract. We discuss the existence and regularity of periodic traveling-wave solu-
tions of a class of nonlocal equations with homogeneous symbol of order ´r, where
r ą 1. Based on the properties of the nonlocal convolution operator, we apply an-
alytic bifurcation theory and show that a highest, peaked, periodic traveling-wave
solution is reached as the limiting case at the end of the main bifurcation curve. The
regularity of the highest wave is proved to be exactly Lipschitz. As an application
of our analysis, we reformulate the steady reduced Ostrovsky equation in a nonlocal
form in terms of a Fourier multiplier operator with symbol mpkq “ k´2. Thereby
we recover its unique highest 2π-periodic, peaked traveling-wave solution, having the
property of being exactly Lipschitz at the crest.

1. Introduction

The present study is concerned with the existence and regularity of a highest, periodic
traveling-wave solution of the nonlocal equation

ut ` Lrux ` uux “ 0, (1.1)

where Lr denotes the Fourier multiplier operator with symbol mpkq “ |k|´r, r ą 1.
Equation (1.1) is also known as the fractional Korteweg–de Vries equation. We are
looking for 2π-periodic traveling-wave solutions upt, xq “ φpx´µtq, where µ ą 0 denotes
the speed of the right-propagating wave. In this context equation (1.1) reduces after
integration to

´ µφ` Lrφ` 1

2
φ2 “ B, (1.2)

where B P R is an integration constant. Since the symbol of Lr is homogeneous, any
bounded solution of the above equation has necessarily zero mean; in turn this implies
that the integration constant B is uniquely determined to be

B “ 1

4π

ż π

´π

φ2pxq dx.

The question about singular, highest waves was already raised by Stokes. In 1880
Stokes conjectured that the Euler equations admit a highest, periodic traveling-wave
having a corner singularity at each crest with an interior angle of exactly 120˝. About
100 years later (in 1982) Stokes’ conjecture was answered in the affirmative by Amick,
Fraenkel, and Toland [1]. Subject of a recent investigation by Ehrnström and Wahlén
[12] is the existence and precise regularity of a highest, periodic traveling-wave solution
for the Whitham equation; thereby proving Whitham’s conjecture on the existence of
such a singular solution. The (unidirectional) Whitham equation is a genuinely nonlo-
cal equation, which can be recovered from the well known Korteweg–de Vries equation
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by replacing its dispersion relation by one branch of the full Euler dispersion rela-
tion. The resulting equation takes (up to a scaling factor) the form of (1.1), where

the symbol of the Fourier multiplier is given by mpkq “
b

tanhpkq
k

. In order to prove

their result, Ehrnström and Wahlén developed a general approach based on the reg-
ularity and monotonicity properties of the convolution kernel induced by the Fourier
multiplier. The highest, periodic traveling-wave solution for the Whitham equation is

exactly C
1

2 -Hölder continuous at its crests; thus exhibiting exactly half the regularity
of the highest wave for the Euler equations. In a subsequent paper, Ehrnström, John-
son, and Claasen [10] studied the existence and regularity of a highest wave for the
bidirectional Whitham equation incorporating the full Euler dispersion relation leading
to a nonlocal equation with cubic nonlinearity and a Fourier multiplier with symbol

mpkq “ tanhpkq
k

. The question addressed in [10] is whether this equation gives rise to
a highest, periodic, traveling wave, which is peaked (that is, whether it has a corner
at each crest), such as the corresponding solution to the Euler equations? Overcoming
the additional challenge of the cubic nonlinearity, the authors in [10] follow a similar
approach as implemented for the Whitham equation in [12] and prove that the highest
wave has a singularity at its crest of the form |x logp|x|q|; thereby still being a cusped
wave. Concerning a different model equation arising in the context of shallow-water
equations, Arnesen [3] investigated the existence and regularity of a highest, periodic,
traveling-wave solution for the Degasperis–Procesi equation. The Degasperis–Procesi
equation is a local equation, but it can also be written in a nonlocal form with quadratic
nonlinearity and a Fourier multiplier with symbol mpkq “ p1 ` k2q´1, which is acting
itself –in contrast to the previously mentioned equations– on a quadratic nonlinearity.
For the Degasperis–Procesi and indeed for all equations in the so-called b-family (the
famous Camassa–Holm equation being also such a member), explicit peaked, periodic,
traveling-wave solutions are known [7, 8]. Using the nonlocal approach introduced orig-
inally for the Whitham equation in [12], the author of [3] adapts the method to the
nonlocal form of the Degasperis–Procesi equation and recovers not only the existence
of a highest, peaked, periodic traveling wave, but also proves that any even, periodic,
highest wave of the Degasperis–Procesi equation is exactly Lipschitz continuous at each
crest; thereby excluding the existence of even, periodic, cusped traveling-wave solutions.

Of our concern is the existence and regularity of highest, traveling waves for the frac-
tional Korteweg–de Vries equation (1.1), where r ą 1. In the case when r “ 2, (1.1)
can be viewed as the nonlocal form of the reduced Ostrovsky equation

put ` uuxqx “ u.

For the reduced Ostrovsky equation, a highest, periodic, peaked traveling-wave solution
is known explicitly [18] and its regularity at each crest is exactly Lipschitz continuous.
Recently, the existence and stability of smooth, periodic traveling-wave solutions for
the reduced Ostrovsky equation, was investigated in [13, 16]. In [14], the authors prove
that the (unique) highest, 2π-periodic traveling-wave solutions of the reduced Ostrovsky
equation is linearly and nonlinearly unstable. We are going to investigate the existence
and precise regularity of highest, periodic traveling-wave solutions of the entire family
of equations (1.1) for Fourier multipliers Lr, where r ą 1. Based on the nonlocal ap-
proach introduced for the Whitham equation [12], we adapt the method in a way which
is convenient to treat homogeneous symbols, and prove the existence and precise Lips-
chitz regularity of highest, periodic, traveling-wave solutions of (1.1) corresponding to
the symbol mpkq “ |k|´r, where r ą 1. The advantage of this nonlocal approach relies
not only in the fact that it can be applied to various equations of local and nonlocal
type, but in particular, that it is suitable to study entire families of equations simultane-
ously; thereby providing an insight into the interplay between a certain nonlinearity and
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varying order of linearity. The main novelty in our work relies upon implementing the
approach used in [12, 10, 3] for equations exhibiting homogeneous symbols. For a homo-
geneous symbol, the associated convolution kernel can not be identified with a positive,
decaying function on the real line. Instead we have to work with a periodic convolution
kernel. The lack of positivity of the kernel can be compensated by working within the
class of zero mean function, though. Moreover, we affirm that starting with a linear
operator of order strictly smaller than ´1 in equation (1.1) a further decrease of order
does not affect the regularity of the corresponding highest, periodic traveling-wave.

1.1. Main result and outline of the paper. Let us formulate our main theorem,
which provides the existence of a global bifurcation branch of nontrivial, smooth, pe-
riodic and even traveling-wave solutions of equation (1.1), which reaches a limiting
peaked, precisely Lipschitz continuous, solution at the end of the bifurcation curve.

Theorem 1.1 (Main theorem). For each integer k ě 1 there exists a wave speed µ˚
k ą 0

and a global bifurcation branch

s ÞÑ pφkpsq, µkpsqq, s ą 0,

of nontrivial, 2π
k

-periodic, smooth, even solutions to the steady equation (1.2) for r ą 1,
emerging from the bifurcation point p0, µ˚

kq. Moreover, given any unbounded sequence
psnqnPN of positive numbers sn, there exists a subsequence of pφkpsnqqnPN, which con-
verges uniformly to a limiting traveling-wave solution pφ̄k, µ̄kq that solves (1.2) and
satisfies

φ̄kp0q “ µ̄k.

The limiting wave is strictly increasing on p´π
k
, 0q and exactly Lipschitz at x P 2π

k
Z.

It is worth to notify that the regularity of peaked traveling-wave solutions is Lipschitz
for all r ą 1. The reason mainly relies in the smoothing properties of the Fourier
multiplier, which is of order strictly bigger than 1, see Theorem 4.6.

The outline of the paper is as follows: In Section 2 we introduce the functional-analytic
setting, notations, and some general conventions. Properties of general Fourier mul-
tipliers with homogeneous symbol and a representation formula for the corresponding
convolution kernel are discussed in Section 3. Section 4 is the heart of the present work,
where we use the regularity and monotonicity properties of the convolution kernel to
study a priori properties of bounded, traveling wave solutions of (1.1). In particular,
we prove that an even, periodic traveling-wave solution φ, which is monotone on a half
period and whose maximum equals the wave speed, is precisely Lipschitz continuous.
Eventually, in Section 5 we investigate the global bifurcation result. By excluding cer-
tain alternatives for the bifurcation curve, we conclude the main theorem. In Section 6
we apply our result to the reduced Ostrovsky equation, which can be reformulated as
a nonlocal equation of the form (1.2) with Fourier symbol mpkq “ k´2. We recover the
well known explicit, even, peaked, periodic traveling-wave given by

φpxq “ 2π2 ´ x2

18
, for µ “ π2

9

on r´π, πs and extended periodically. Moreover, we prove that any periodic traveling-
wave φ ď µ is at least Lipschitz continuous at its crests; thereby excluding the possibility
of periodic, traveling-waves φ ď µ exhibiting a cusp at its crests. Let us mention that the
Fourier multiplier L2 for the reduced Ostrovsky equation can be written as a convolution
operator, whose kernel can be computed explicitly, see Remark 3.7. Furthermore, relying
on a priori bounds on the wave speed coming from a dynamical system approach for
the reduced Ostrovsky equation in [13], we are able to obtain a better understanding of
the behavior of the global bifurcation branch.
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2. Functional-analytic setting and general conventions

Let us introduce the relevant function spaces for our analysis and fix some notation.
We are seeking for 2π-periodic solutions of the steady equation (1.2). Let us set T :“
r´π, πs, where we identify ´π with π. In view of the nonlocal approach via Fourier
multipliers, the Besov spaces on torus T form a natural scale of spaces to work in. We
recall the definition and some basic properties of periodic Besov spaces.

Denote by DpTq the space of test functions on T, whose dual space, the space of distri-
butions on T, is D1pTq. If SpZq is the space of rapidly decaying functions from Z to C

and S 1pZq denotes its dual space, let F : D1pTq Ñ S 1pZq be the Fourier transformation
on the torus defined by duality on DpTq via

Ffpkq “ f̂pkq :“ 1

2π

ż

T

fpxqe´ixk dx, f P DpTq.

Let pϕqjě0 Ă C8
c pRq be a family of smooth, compactly supported functions satisfying

suppϕ0 Ă r´2, 2s, suppϕj Ă r´2j`1,´2j´1s X r2j´1, 2j`1s for j ě 1,
ÿ

jě0

ϕjpξq “ 1 for all ξ P R,

and for any n P N, there exists a constant cn ą 0 such that

sup
jě0

2jn}ϕpnq
j }8 ď cn.

For p, q P r1,8s and s P R, the periodic Besov spaces are defined by

Bs
p,qpTq :“

#
f P D1pTq | }f}qBs

p,q
:“

ÿ

jě0

2sjq

›››››
ÿ

kPZ

eikp¨qϕjpkqf̂pkq
›››››

q

Lp

ă 8
+
,

with the common modification when q “ 81. If s ą 0 and p P r1,8s, then

W s,ppTq Ă Bs
p,qpTq Ă LppTq for any q P r1,8s.

Moreover, for s ą 0, the Besov space Bs
8,8pTq consisting of functions f satisfying

}f}Bs
8,8

“ sup
jě0

2sj

›››››
ÿ

kPZ

eikp¨qϕjpkqf̂pkq
›››››

8

ă 8

is called periodic Zygmund space of order s and we write

CspTq :“ Bs
8,8pTq.

Eventually, for α P p0, 1q, we denote by CαpTq the space of α-Hölder continuous func-
tions on T. If k P N and α P p0, 1q, then Ck,αpTq denotes the space of k-times contin-
uously differentiable functions whose k-th derivative is α-Hölder continuous on T. To
lighten the notation we write CspTq “ Ctsu,s´tsupTq for s ě 0.

As a consequence of Littlewood–Paley theory, we have the relation CspTq “ CspTq for
any s ą 0 with s R N; that is, the Hölder spaces on the torus are completely characterized
by Fourier series. If s P N, then CspTq is a proper subset of CspTq and

C1pTq Ĺ C1´pTq Ĺ C1pTq.
Here, C1´pTq denotes the space of Lipschitz continuous functions on T. For more details
we refer to [20, Chapter 13].

1One can show that the above definition is independent of the particular choice of pϕqjě0
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We are looking for solutions in the class of 2π-periodic, bounded functions with zero
mean, the class being denoted by

L8
0 pTq :“ tf P L8pTq | f has zero meanu.

In the sequel we continue to use the subscript 0 to denote the restriction of a respective
space to its subset of functions with zero mean.

If f and g are elements in an ordered Banach space, we write f À g (f Á g) if there
exists a constant c ą 0 such that f ď cg (f ě cg). Moreover, the notation f h g

is used whenever f À g and f Á g. We denote by R` the nonnegative real half axis
R` :“ r0,8s and by N0 the set of natural numbers including zero. The space LpX;Y q
denotes the set of all bounded linear operators from X to Y .

3. Fourier multipliers with homogeneous symbol

The following result is an analogous statement to the classical Fourier multiplier theo-
rems for nonhomogeneous symbols on Besov spaces (e.g. [4, Proposition 2.78]):

Proposition 3.1. Let m ą 0 and σ : R Ñ R be a function, which is smooth outside the
origin and satisfies

|Baσpξq| À |ξ|´m´a for all ξ ‰ 0, a P N0.

Then, the Fourier multiplier L defined by

Lf “
ÿ

k‰0

σpkqf̂pkqeikp¨q

belongs to the space LpBs
8,80

pTq;Bs`m
8,8 0

pTqq.
Proof. In view of the zero mean property of f , the proof can be carried out in a similar
form as in [2, Theorem 2.3 (v)], where it is show that a function f belongs to Bs

8,8pTq
if and only if ÿ

k‰0

f̂pkqpikq´meikp¨q P Bs`m
8,8 pTq.

�

The above proposition yields in particular that

Lrf :“
ÿ

k‰0

|k|´r f̂pkqeikp¨q, r ą 1,

defines a bounded operator form Cs
0
pTq to Cs`r

0
pTq for any s ą 0; thereby it is a smooth-

ing operator of order ´r.
We are interested in the existence and regularity properties of solutions of

´ µφ` Lrφ` 1

2
φ ´ 1

2
xφ2p0q “ 0, r ą 1. (3.1)

The operator Lr is defined as the inverse Fourier representation

Lrfpxq “ F´1pmrf̂qpxq,
where mrpkq “ |k|´r for k ‰ 0 and mrp0q “ 0. In view of the convolution theorem, we
define the integral kernel

Krpxq :“ 2

8ÿ

k“1

|k|´r cos pxkq , x P T, (3.2)

so that the action of Lr is described by the convolution

Lrf “ Kr ˚ f.
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One can then express equation (3.1) as

´µφ`Kr ˚ φ´ 1

2
xφ2p0q “ 0, Kr :“ F´1pmrq.

In what follows we examine the kernel Kr. We start by recalling some general theory
on completely monotonic sequences taken from [15, 21].

Definition 3.2. A sequence pµkqkPN0
of real numbers is called completely monotonic if

its elements are nonnegative and

p´1qn∆nµk ě 0 for any n, k P N0,

where ∆0µk “ µk and ∆n`1µk “ ∆nµk`1 ´ ∆nµk.

Definition 3.3. A function f : r0,8q Ñ R is called completely monotone if it is
continuous on r0,8q, smooth on the open set p0,8q, and satisfies

p´1qnf pnqpxq ě 0 for any x ą 0.

For completely monotonic sequences we have the following theorem, which can be con-
sidered as the discrete analog of Bernstein’s theorem on completely monotonic functions.

Theorem 3.4 ([21], Theorem 4a). A sequence pµkqkPN0
of real numbers is completely

monotonic if and only if

µk “
ż

1

0

tkdσptq,

where σ is nondecreasing and bounded for t P r0, 1s.
There exists a close relationship between completely monotonic sequences and com-
pletely monotonic functions.

Lemma 3.5 ([15], Theorem 5). Suppose that f : r0,8q Ñ R is completely monotone,
then for any a ě 0 the sequence pfpanqqnPN0

is completely monotonic.

We are going to use the theory on completely monotonic sequences to prove the following
theorem, which summarizes some properties of the kernel Kr.

Theorem 3.6 (Properties of Kr). Let r ą 1. The kernel Kr defined in (3.2) has the
following properties:

a) Kr is even, continuous, and has zero mean.
b) Kr is smooth on Tzt0u and decreasing on p0, πq.
c) Kr P W r´ε,1pTq for any ε P p0, 1q. In particular, K 1

r is integrable and Kr is α-
Hölder continuous with α P p0, r´1q if r P p1, 2s, and continuously differentiable
if r ą 2.

Proof. Claim a) follows directly form the definition of Kr and r ą 1. Now we want to
prove part b). Set

µk :“ pk ` 1q´r for k P N0.

Clearly x ÞÑ px` 1q´r is completely monotone on p0,8q. Thus, Lemma 3.5 guarantees
that pµkqkPN0

is a completely monotonic sequence. By Theorem 3.4, there exists a
nondecreasing and bounded function σr : r0, 1s Ñ R such that

pk ` 1q´r “
ż

1

0

tk dσrptq for any k ě 0.

In particular

|k|´r “
ż

1

0

t|k|´1 dσrptq for any k ‰ 0.



WAVES OF MAXIMAL HEIGHT FOR A CLASS OF NONLOCAL EQUATIONS 7

The coefficients t|k|´1 can be written as

t|k|´1 “
ż

T

fpt, xqe´ixk dx for k ‰ 0,

where

fpt, xq “
ÿ

k‰0

t|k|´1eixk ` a0ptq

for some bounded function a0 : p0, 1q Ñ R. Thereby,

|k|´r “
ż

T

ż
1

0

fpt, xq dσrptqe´ixk dx for any k ‰ 0.

In particular, we deduce that
ż

1

0

fpt, xq dσrptq “
ÿ

k‰0

|k|´reixk “ Krpxq.

Notice that we can compute f explicitly as

fpt, xq ´ a0ptq “
ÿ

k‰0

t|k|´1eixk “ 2

8ÿ

k“1

tk´1 cospxkq “ 2
ÿ

k“0

tk cospxpk ` 1qq

“ 2Re

˜
eix

ÿ

k“0

tkeixk

¸
“ 2Re

˜
eix

8ÿ

k“0

`
teix

˘k
¸
.

Thus, for x P p0, πq, we have that

fpt, xq “ 2Re

ˆ
eix

1

1 ´ teix

˙
` a0ptq “ 2pcospxq ´ tq

1 ´ t2 cospxq ` t4
` a0ptq.

Consequently, on the interval p0, πq, the kernel Kr is represented by

Krpxq “
ż

1

0

ˆ
2pcospxq ´ tq

1 ´ t cospxq ` t2
` a0ptq

˙
dσrptq.

From here it is easy to deduce that Kr is smooth on Tzt0u and decreasing on p0, πq,
which completes the proof of b). Regarding the regularity of Kr claimed in c), let
ε P p0, 1q be arbitrary. On the subset of zero mean functions of W r´ε,1pTq an equivalent
norm is given by

}Kr}
W

r´ε,1
0

h }F´1

´
| ¨ |r´εK̂r

¯
}L1 .

Thereby, Kr is in W r´ε,1
0

pTq if and only if the function

x ÞÑ F´1p| ¨ |r´εK̂rqpxq “ 2

8ÿ

k“1

|k|r´ε´r cospxkq “ 2

8ÿ

k“1

|k|´ε cospxkq

is integrable over T. Now, this follows by a classical theorem on the integrability of
trigonometric transformations (cf. [5, Theorem 2] ), and we deduce the claimed reg-
ularity and integrability of K 1

r. The continuity properties are a direct consequence of
Sobolev embedding theorems, see [9, Theorem 4.57]. �

Remark 3.7. The proof of Theorem 3.6 includes a general approach on the relation
between the symbol and the monotonicity property of the corresponding Fourier mul-
tiplier. However, there exists even a more explicit expression of Kr in terms of the
Gamma function (cf. [19, Section 5.4.3]) given by

Krpxq “ 2

Γprq

ż 8

0

tr´1pet cos pxq ´ 1q
1 ´ 2et cos pxq ` e2t

dt, x P r0, πs, r ą 1.



8 GABRIELE BRUELL AND RAJ NARAYAN DHARA

Moreover, we would like to point out that if r “ 2n, n P N, we have that

K2npxq “ p´1qn´1

p2nq! p2πq2nB2n

´ x

2π

¯
, x P r0, πs,

where Bm is the m-th Bernoulli polynomial. If r “ 2 (which corresponds to the case
of the reduced Ostrovsky equation), or r “ 4, then B2pxq “ x2 ´ x ` 1

6
, B4pxq “

x4 ´ 2x3 ` x2 ´ 1

30
, and

K2pxq “ 1

2
p|x| ´ πq2 ´ π2

6
, K4pxq “ π4

45
´ 1

24

`
x2 ´ 2π|x|

˘2
, x P r´π, πs.

´π π

Figure 1. Plot of K2 (solid) and K4 (dashed).

Lemma 3.8. Let r ą 1. The operator Lr is parity preserving on L8
0

pTq. Moreover, if
f, g P L8

0
pTq are odd functions satisfying fpxq ě gpxq on r0, πs, then either

Lrfpxq ą Lrgpxq for all x P p0, πq,
or f “ g on T.

Proof. The fact that Lr is parity preserving is an immediate consequence of the evenness
of the convolution kernel. In order to prove the second assertion, assume that f, g P
L8
0

pTq are odd, satisfying fpxq ě gpxq on r0, πs and that there exists x0 P p0, πq such
that fpx0q “ gpx0q. Using the zero mean property of f and g, we obtain that

Lrfpx0q ´ Lrgpx0q “
ż π

´π

pKrpx0 ´ yq ´ minKrq pfpyq ´ gpyqq dy ą 0,

where minKr denotes the minimum of Kr on T. In view of Kr being nonconstant and
Krpyq ´ minKr ě 0 for all y P T, we conclude that

Lrfpx0q ´ Lrgpx0q ą 0,

which is a contradiction unless f “ g on T. �

4. A priori properties of periodic traveling-wave solutions

In the sequel, let r ą 1 be fixed. We consider 2π-periodic solutions of

´ µφ` Lrφ` 1

2
φ2 ´ 1

2
xφ2p0q “ 0. (4.1)

The existence of solutions is subject of Section 5, where we use analytic bifurcation
theory to first construct small amplitude solutions and then extend this bifurcation
curve to a global continuum terminating in a highest, traveling wave. Aim of this
section is to provide a priori properties of traveling-wave solutions φ ď µ. In particular,
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we show that any nontrivial, even solution φ ď µ, which is nondecreasing on the half
period p´π, 0q and attaining its maximum at φp0q “ µ is precisely Lipschitz continuous.
This holds true for any r ą 1, see Theorem 4.7.

We would like to point out that the subsequent analysis can be carried out in the very
same manner for 2P -periodic solutions, where P P p0,8q is the length of a finite half
period.

Let us start with a short observation.

Lemma 4.1. If φ P C0pTq is a nontrivial solution of (4.1), then

φpxM q ` φpxmq ě 2 pµ´ }Kr}L1q ,
where φpxM q “ maxxPT φpxq and φpxmq “ minxPT φpxq.
Proof. If φ P C0pTq is a nontrivial solution of (4.1), then φpxM q ą 0 ą φpxmq and

µpφpxM q ´ φpxmqq “ Kr ˚ φpxM q ´Kr ˚ φpxmq ` 1

2

`
φ2pxM q ´ φ2pxmq

˘

ď }Kr}L1pφpxM q ´ φpxmqq ` 1

2
pφpxM q ´ φpxmqq pφpxM q ` φpxmqq ,

which proves the statement. �

In what follows it is going to be convenient to write (4.1) as

1

2
pµ ´ φq2 “ 1

2
µ2 ´ Lrφ ` 1

2
xφ2p0q. (4.2)

In the next two lemmata we establish a priori properties of periodic solutions of (4.2)
requiring solely boundedness.

Lemma 4.2. Let φ P L8
0

pTq be a solution of (4.2), then pµ´ φq2 P C1pTq and
››››
d

dx
pµ´ φq2

››››
8

ď 2
››K 1

r

››
L1 }φ}8 for all x P T.

Proof. We can read of from (4.2), that the derivative of pµ ´ φq2 is given by

d

dx
pµ ´ φq2pxq “ ´2K 1

r ˚ φpxq.

Since K 1
r and φ are integrable over T (cf. Theorem 3.6), the convolution on the right

hand side is continuous and the claimed estimate follows. �

Lemma 4.3. Let φ P L8
0

pTq be a solution of (4.2), then

}φ}8 ď 2 pµ` }Kr}L1q ` 2π}K 1
r}L1 .

Proof. If φ “ 0, there is nothing to prove. Therefore it is enough to assume that φ
is a nontrivial solution. From Lemma 4.2 we know that pµ ´ φq2 is a continuously
differentiable function. In view of φ being a function of zero mean and pµ ´ φq2 being
continuous, we deduce the existence of x0 P T such that

pµ´ φq2px0q “ µ2.

By the mean value theorem, we obtain that

pµ´ φq2pxq “
“
pµ ´ φq2

‰1 pξqpx ´ x0q ` µ2

for some ξ P T and

xφ2p0q “ 1

2π

ż π

´π

φ2pxq dx “ 1

2π

ż π

´π

“
pµ´ φq2

‰1 pξqpx ´ x0q dx,
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where we used that φ has zero mean. Again by Lemma 4.2 we can estimate the term
above generously by

xφ2p0q ď 2π}K 1
r}L1}φ}8.

Using that φ solves (4.1), we obtain

}φ}28 ď 2pµ ` }Kr}L1q}φ}8 ` 2π}K 1
r}L1}φ}8.

Dividing by }φ}8 yields the statement.
�

From now on we restrict our considerations on periodic solutions of (4.2), which are
even and nondecreasing on the half period r´π, 0s.
Lemma 4.4. Any nontrivial, even solution φ P C1

0
pTq of (4.2) which is nondecreasing

on p´π, 0q satisfies

φ1pxq ą 0 and φpxq ă µ on p´π, 0q.
Moreover, if φ P C2

0
pTq, then φ2p0q ă 0.

Proof. Assuming that φ P C1
0

pTq we can take the derivative of (4.2) and obtain that

pµ´ φqφ1pxq “ Lrφ
1pxq.

Due to the assumption that φ1 ě 0 on p´π, 0q it is sufficient to show that

Lrφ
1pxq ą 0 on p´π, 0q (4.3)

to prove the statement. In view of φ1 being odd with φ1pxq ě 0 on r´π, 0s, the desired
inequality (4.3) follows from Lemma 3.8. In order to prove the second statement, let us
assume that φ P C2

0
pTq. Differentiating (4.2) twice yields

pµ´ φqφ2pxq “ Lrφ
2pxq ` pφ1q2pxq.

In particular, we have that

pµ´ φqφ2p0q “ Lrφ
2p0q.

We are going to show that Lrφ
2p0q ă 0, which then (together with the first part) proves

the statement. Using the evenness of Kr and φ2, we compute

1

2
Lrφ

2p0q “ 1

2

ż π

´π

Krpyqφ2pyq dy

“
ż π

0

Krpyqφ2pyq dy

“
ż ε

0

Krpyqφ2pyq dy `
ż π

ε

Krpyqφ2pyq dy

“
ż ε

0

Krpyqφ2pyq dy `Krpεqφ1pεq ´
ż π

ε

K 1
rpyqφ1pyq dy.

Notice that the first integral on the right hand side tends to zero if ε Ñ 0, so does the
second term in view of φ being differentiable and Kr continuous on T. Concerning the
last integral, we observe that

1

2
Lrφ

2p0q “ ´ lim
εÑ0`

ż π

ε

K 1
rpyqφ1pyq dy ă 0,

since K 1
r and φ1 are negative on p0, πq. �

We continue by showing that any bounded solution φ of (4.2) that satisfies φ ă µ is
smooth.

Theorem 4.5. Let φ ď µ be a bounded solution of (4.2). Then:
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(i) If φ ă µ uniformly on T, then φ P C8pRq.
(ii) Considering φ as a periodic function on R it is smooth on any open set where

φ ă µ.

Proof. Let φ ă µ uniformly on T. Recalling Proposition 3.1, we know that the operator
Lr maps Bs

8,80
pTq into Bs`r

8,80
pTq for any s P R. Moreover, if s ą 0 then the Nemytskii

operator

f ÞÑ µ´
c

1

2
µ2 ´ f

maps Bs
8,80

pTq into itself for f ă 1

2
µ2. From (4.2) we see that for any solution φ ă µ

we have

Lφ´ 1

2
pφ2p0q ă 1

2
µ2.

Thus,
«
Lrφ ÞÑ

c
1

2
µ2 ´ Lφ` 1

2
φ̂2p0q

ff
˝

„
φ ÞÑ Lrφ ´ 1

2
pφ2p0q


: Bs

8,80
pTq Ñ Bs`r

8,80
pTq,

(4.4)

for all s ě 0. Eventually, (4.2) gives rise to

φ “ µ´
b
µ2 ´ 2Lrφ` φ̂2p0q.

Hence, an iteration argument in s guarantees that φ P C8pTq. In order to prove
the statement on the real line, recall that any Fourier multiplier commutes with the
translation operator. Thus, if φ is a periodic solution of (4.2), then so is φh :“ φp¨ ` hq
for any h P R. The previous argument implies that φh P C8pTq for any h P R, which
proves statement (i). In order to prove part (ii) let U Ă R be an open subset of R on
which φ ă µ. Then, we can find an open cover U “ YiPIUi, where for any i P I we have
that Ui is connected and satisfies |Ui| ă 2π. Due to the translation invariance of (4.2)
and part (i), we obtain that φ is smooth on Ui for any i P I. Since U is the union of
open sets, the assertion follows. �

Theorem 4.6. Let φ ď µ be an even solution of (4.2), which is nondecreasing on
r´π, 0s. If φ attains its maximum at φp0q “ µ, then φ cannot belong to the class C1pTq.

Proof. Assuming that φ P C1pTq, the same argument as in Lemma 4.2 implies that
the function pµ´ φq2 is twice continuously differentiable and its Taylor expansion in a
neighborhood of x “ 0 is given by

pµ´ φq2pxq “ rpµ´ φq2s1p0qx ` 1

2
rpµ ´ φq2s2pξqx2 (4.5)

for some |ξ| P p0, |x|q where |x| ! 1. Since φ attains a local maximum at x “ 0, its first
derivative above vanishes at the origin whereas the second derivative is given by

1

2
rpµ ´ φq2s2pξq “ ´K 1

r ˚ φ1pξq.

We aim to show that in a small neighborhood of zero the right hand side is strictly
bounded away from zero. Set fpξq :“ ´K 1

r ˚ φ1pξq. Using that Kr and φ are even
functions with K 1

r and φ1 being negative on p0, πq, we find that

fp0q “ ´K 1
r ˚ φ1p0q “ 2

ż π

0

K 1
rpyqφ1pyq dy “ c ą 0
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for some constant c ą 0. Since f is even (cf. Lemma 3.8) and continuous, there exists
|x0| ! 1 and a constant c0 ą 0 such that

1

2
rpµ´ φq2s2pξq “ fpξq ě c0, for all ξ P p0, |x0|q.

Thus, considering the Taylor series (4.5) in a neighborhood of zero, we have that

pµ´ φq2pxq Á x2 for |x| ! 1,

which in particular implies that

µ´ φpxq
|x| Á 1 for |x| ! 1.

Passing to the limit x Ñ 0, we obtain a contradiction to φ1p0q “ 0. �

We are now investigating the precise regularity of a solution φ, which attains its maxi-
mum at φp0q “ µ.

Theorem 4.7. Let φ ď µ be an even solution of (4.2), which is nondecreasing on
r´π, 0s. If φ attains its maximum at φp0q “ µ, then the following holds:

(i) φ P C8pTzt0uq and φ is strictly increasing on p´π, 0q.
(ii) φ P C1´

0
pTq, that is φ is Lipschitz continuous.

(iii) φ is precisely Lipschitz continuous at x “ 0, that is

µ´ φpxq » |x| for |x| ! 1. (4.6)

Proof. (i) Assume that φ ď µ is a solution which is even and nondecreasing on
p´π, 0q. Let x P p´π, 0q and h P p0, πq. Notice that by periodicity and evenness
of φ and the kernel Kr, we have that

Kr ˚ φpx ` hq ´Kr ˚ φpx´ hq

“
ż

0

´π

pKrpx´ yq ´Krpx` yqq pφpy ` hq ´ φpy ´ hqq dy.

The integrand is nonnegative, since Krpx´yq ´Krpx`yq ą 0 for x, y P p´π, 0q
and φpy ` hq ´ φpy ´ hq ě 0 for y P p´π, 0q and h P p0, πq by assumption that
φ is even and nondecreasing on p´π, 0q. Since φ is a nontrivial solution and Kr

is not constant, we deduce that

Kr ˚ φpx ` hq ´Kr ˚ φpx ´ hq ą 0 (4.7)

for any h P p0, πq. Moreover, we have that

1

2
p2µ ´ φpxq ´ φpyqq pφpyq ´ φpxqq “ Kr ˚ φpxq ´Kr ˚ φpyq

for any x, y P T. Hence Kr ˚ φpxq “ Kr ˚ φpyq if and only if φpxq “ φpyq. In
view of (4.7), we obtain that

φpx` hq ‰ φpx ´ hq for any h P p0, πq.
Thereby, φ is strictly increasing on p´π, 0q. In view of Theorem 4.5, φ is smooth
on Tzt0u.

(ii) In order to prove the Lipschitz regularity at the crest, we make use of a simple
bootstrap argument. We would like to emphasize that the following argument
strongly relies on the fact that we are dealing with a smoothing operator of
order ´r, where r ą 1. Let us assume that φ is not Lipschitz continuous and
prove a contradiction. If φ ď µ is merely a bounded function, the regularization
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property of Lr implies immediately the φ is a priori 1

2
-Hölder continuous. To

see this, recall that

1

2
p2µ ´ φpxq ´ φpyqq pφpyq ´ φpxqq “ Lrφpxq ´ Lrφpyq.

Using φ ď µ, we deduce that

1

2
pφpxq ´ φpyqq2 ď |Lrφpxq ´ Lrφpyq|.

Since Lr : L8
0

pTq Ñ Cr
0
pTq, where r ą 1, the right hand side can be estimated

by a constant multiple of |x ´ y|. An immediate consequence is the 1

2
-Hölder

continuity of φ. Since φ is smooth in Tzt0u, we can differentiate the equality

1

2
pµ´ φq2pxq “ Kr ˚ φp0q ´Kr ˚ φpxq

for x P p´π, 0q and obtain that

pµ ´ φqφ1pxq “ pKr ˚ φq1 pxq ´ pKr ˚ φq1 p0q,
where we are using that pKr ˚ φq1 p0q “ 0. If φ is 1

2
-Hölder continuous, then

Kr ˚ φ P C
1

2
`r

0
pTq. In view of r ą 1, we gain at least some Hölder regularity for

pKr ˚ φq1. Thereby,

pµ ´ φqφ1pxq À |x|a (4.8)

for some a P p1
2
, 1s. By assumption that φ is not Lipschitz continuous at x “ 0,

the above estimate guarantees that φ is at least a-Hölder continuous, where
a ą 1

2
. We aim to bootstrap this argument to obtain Lipschitz regularity of

φ at x “ 0. If above 1

2
` r ą 2, we use that Kr ˚ φ P C

1

2
`r

0
pTq Ă C2

0
pT q,

which guarantees that its derivative is at least Lipschitz continuous (a “ 1 in
(4.8)) and we are done. If 1

2
` r ď 2, we merely obtain an improved a-Hölder

regularity of φ. However, repeating the argument finitely many times, yields
that φ is indeed Lipschitz continuous at x “ 0, that is

µ´ φpxq À |x|, for |x| ! 1. (4.9)

(iii) In view of the upper bound (4.9) we are left to establish an according lower
bound for |x| ! 1 to prove the claim (4.6). To achieve this, we show that the
derivative is positive and bounded away from zero on p´π, 0q. Let ξ P p´π, 0q,
then

pµ´ φqφ1pξq “ K 1
r ˚ φpξq “

ż
0

´π

pKrpξ ´ yq ´Krpξ ` yqqφ1pyq dy.

Using the upper bound established in (4.9), we divide the above equation by
pµ´ φqpξq and obtain that

φ1pξq Á
ż

0

´π

Krpξ ´ yq ´Krpξ ` yq
|ξ| φ1pyq dy.

Our aim is to show that lim infξÑ´0 φ
1pξq is strictly bounded away from zero.

We have that

lim
ξÑ´0

Krpξ ´ yq ´Krpξ ` yq
|ξ|

“ lim
ξÑ´0

ˆ
Krpy ´ ξq ´Krpyq

ξ
` Krpyq ´Krpy ` ξq

ξ

˙
ξ

|ξ| “ 2K 1
rpyq
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for any y P p´π, 0q (keep in mind that ξ ă 0). The integrability of K 1
r allows us

to estimate

lim inf
ξÑ0

φ1pξq Á 2

ż
0

´π

K 1
rpyqφ1pyq dy “ c (4.10)

for some constant c ą 0, since φ as well as Kr are strictly increasing on p´π, 0q.
Let x ă 0 with |x| ! 1. Applying the mean value theorem for φ on the interval
px, 0q yields that

φp0q ´ φpxq
|x| “ φ1pξq for some |ξ| ! 1.

In accordance with (4.10), we conclude that

µ´ φpxq » |x| for |x| ! 1.

�

Remark 4.8. The above theorem implies in particular that any periodic solution φ ď µ

of (4.2), which is monotone on a half period, is at least Lipschitz continuous. Thereby,
the existence of corresponding cusped traveling-wave solutions satisfying φ ď µ is a
priori excluded.

Lemma 4.9. Let φ ď µ be an even solution of (4.2), which is nondecreasing on r´π, 0s.
Then there exists a constant λ “ λprq ą 0, depending only on the kernel Kr, such that

µ´ φpπq ě λπ.

Proof. Let us pick x P r´3

4
π,´1

4
πs. Then,

pµ ´ φpπqqφ1pxq ě pµ ´ φpxqqφ1pxq

“
ż

0

´π

pKrpx ´ yq ´Krpx ` yqqφ1pyq dy

ě
ż ´ 1

4
π

´ 3

4
π

pKrpx´ yq ´Krpx ` yqqφ1pyq dy,

(4.11)

using the evenness of the kernel Kr, implying that Krpx ´ yq ´ Krpx ` yq ą 0 for
x, y P p´π, 0q. We observe that there exists a constant λ “ λprq ą 0, depending only
on the kernel Kr, such that

Krpx ´ yq ´Krpx` yq ě 2λ for all x, y P
ˆ

´3

4
π,´1

4
π

˙
.

Thus, integrating (4.11) with respect to x over
`
´3

4
π,´1

4
π

˘
yields

pµ´ φpπqq
ˆ
φ

ˆ
´1

4
π

˙
´ φ

ˆ
´3

4
π

˙˙
ě

ż ´ 1

4
π

´ 3

4
π

˜ż ´ 1

4
π

´ 3

4
π

Krpx ´ yq ´Krpx ` yq dx
¸
φ1pyq dy

ě λπ

ˆ
φ

ˆ
´1

4
π

˙
´ φ

ˆ
´3

4
π

˙˙
.

In view of φ being strictly increasing on p´π, 0q (cf. Theorem 4.7 (i)), we can divide
the above inequality by the positive number

`
φ

`
´1

4
π

˘
´ φ

`
´3

4
π

˘˘
and thereby affirm

the claim. �

We close this section by proving that there is a natural bound on µ above which there
do not exist any nontrivial, continuous solutions, which satisfying the uniform bound
φ ď µ. This is going to be used to exclude certain alternatives in the analysis of the
global bifurcation curve in Section 5.
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Lemma 4.10. If µ ě 2}Kr}L1 , then there exist no nontrivial continuous solution φ ď µ

of (4.2).

Proof. Assume that φ ď µ is a nontrivial continuous solution of (4.2). The statement is
a direct consequence of Lemma 4.1: Since φ is continuous and has zero mean, we have
that

2pµ´ }Kr}L1q ď φpxM q ` φpxmq ă φpxM q ď µ,

where φpxM q “ maxxPT φpxq and φpxmq “ minxPT φpxq ă 0. Then

µ ă 2}Kr}L1 .

�

5. Global bifurcation and conclusion of the main theorem

This section is devoted to the existence of nontrivial, even, periodic solutions of (4.2).
After constructing small amplitude solutions via local bifurcation theory, we extend
the local bifurcation branch globally and characterize the end of the global bifurcation
curve. By excluding certain alternatives, based on a priori bounds on the wave speed
(cf. Lemma 4.10 and Lemma 5.9 below), we prove that the global bifurcation curve
reaches a limiting highest wave φ, which is even, strictly monotone on its open half
periods and with maximum at φp0q “ µ. By Theorem 4.7 then, the highest wave is a
peaked traveling-wave solution of

ut ` Lrux ` uux “ 0 for r ą 1.

We use the subscript Xeven for the restriction of a Banach space X to its subset of even
functions. Let α P p1, 2q and set

F : Cα
0,evenpTq ˆ R

` Ñ Cα
0,evenpTq,

where

F pφ, µq :“ µφ ´ Lrφ ´ φ2{2 ` xφ2p0q{2, pφ, µq P Cα
0,evenpTq ˆ R`. (5.1)

Then, F pφ, µq “ 0 if and only if φ is an even Cα
0

pTq-solution of (4.2) corresponding
to the wave speed µ P R`. Clearly. F p0, µq “ 0 for any µ P R`. We are looking for
2π-periodic, even, nontrivial solutions bifurcating from the line tp0, µq | µ P Ru of trivial
solutions. The wave speed µ ą 0 shall be the bifurcation parameter. The linearization
of F around the trivial solution φ “ 0 is given by

DφF p0, µq : Cα
0,evenpTq Ñ Cα

0,evenpTq, φ ÞÑ pµ id ´ Lrqφ.
Recall that Lr : C

α
0,evenpTq Ñ Cα`r

0,evenpTq is parity preserving and a smoothing operator,

which implies that it is compact on Cα
0,evenpTq. Hence, DφF p0, µq is a compact per-

turbation of an isomorphism, and therefore constitutes a Fredholm operator of index
zero.

The nontrivial kernel of DφF p0, µq is given by those functions ψ P Cα
0,evenpTq satisfying

pψpkq
`
µ´ |k|´r

˘
“ 0, k ‰ 0.

For µ P p0, 1s, we see that suppψ Ď t˘µ´ 1

r u. Therefore, the kernel of DφF p0, µq is
one-dimensional if and only if µ “ |k|´r for some k P Z, in which case it is given by

kerDφp0, µq “ spantφ˚
ku with φ˚

kpxq :“ cos pxkq .
The above discussion allows us to apply the Crandall–Rabionwitz theorem, where the
transversality condition is trivially satisfied since we bifurcate from a simple eigenvalue
(cf. [6, Chapter 8.4]).



16 GABRIELE BRUELL AND RAJ NARAYAN DHARA

Theorem 5.1 (Local bifurcation). For each integer k ě 1, the point p0, µ˚
kq, where

µ˚
k “ k´r is a bifurcation point. More precisely, there exists ε0 ą 0 and an analytic

curve through p0, µ˚
kq,

tpφkpεq, µkpεqq | |ε| ă ε0u Ă Cα
0,evenpTq ˆ R`,

of nontrivial, 2π
k

-periodic, even solutions of (5.1) with µkp0q “ µ˚
k and

Dεφkp0q “ φ˚
kpxq “ cos pxkq .

In a neighborhood of the bifurcation point p0, µ˚
kq these are all the nontrivial solutions

of F pφ, µq “ 0 in Cα
0,evenpTq ˆ R`.

We aim to extend the local bifurcation branch found in Theorem 5.1 to a global con-
tinuum of solutions of F pφ, µq “ 0. Set

S :“ tpφ, µq P U : F pφ, µq “ 0u,
where

U :“ tpφ, µq P Cα
0,evenpTq ˆ R` | φ ă µu.

Lemma 5.2. The Frechét derivative DφF pφ, µq is a Fredholm operator of index 0 for
all pφ, µq P U .

Proof. If pφ, µq P U , then φ ă µ and

DφF pφ, µq “ pµ´ φqid ´ Lr,

constitutes a compact perturbation of an isomorphism. Thereby, it is a Fredholm op-
erator of index zero. �

Let us recall that all bounded solutions φ of (4.2), that is all bounded solutions φ
satisfying F pφ, µq “ 0, are uniformly bounded by

}φ}8 ď 2pµ ` }Kr}L1 ` 2π}K 1
r}L1q, (5.2)

as shown in Lemma 4.3.

Lemma 5.3. Any bounded and closed set of S is compact in Cα
0,evenpTq ˆ R`.

Proof. If pφ, µq P S, then in particular φ is smooth and

φ “ µ´
b
µ2 ` φ̂2p0q ´ 2Lrφ “: F̃ pφ, µq.

Since the function F̃ maps U into Cα`r
0,evenpTq, the latter being compactly embedded

into Cα
0,evenpTq, we obtain that F̃ maps bounded sets in U into relatively compact sets

in Cα
0,evenpTq. Let A Ă S Ă U be a bounded and closed set. Then F̃ pAq “ tφ |

pφ, µq P Au is relatively compact in Cα
0,evenpTq. In view of A being closed, any sequence

tpφn, µnqunPN has a convergent subsequence in A. We conclude that A is compact in
Cα
0,evenpTq ˆ R`. �

Using Lemma 5.2 and 5.3 we can extend the local branches found in Theorem 5.1
to global curves. The result follows from [6, Theorem 9.1.1] once we show that µpεq
is not identically constant for 0 ă ε ! 1. The latter claim however is an immediate
consequence of Theorem 5.6 below. The proof essentially follows the lines in [11, Section
4].

Theorem 5.4 (Global bifurcation). The local bifurcation curve s ÞÑ pφkpsq, µkpsqq
from Theorem 5.1 of solutions of (5.1) extends to a global continuous curve of solutions
R` Ñ S and one of the following alternatives holds:

(i) }pφkpsq, µkpsqq}CαpTqˆR`
is unbounded as s Ñ 8.

(ii) The pair pφkpsq, µkpsqq approaches the boundary of S as s Ñ 8.
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(iii) The function s ÞÑ pφkpsq, µkpsqq is (finitely) periodic.

max φ

µ˚

k

µ

max φ “ µ

2}Kr}L1

Figure 2. Global bifurcation curve of 2π
k

-periodic, even solutions,
reaching a limiting highest wave. Alternative (iii) in Theorem 5.4 is
excluded by Proposition 5.8. The dashed line indicates the natural up-
per bound on the wave speed found in Lemma 4.10. Along the bifurca-
tion branch the wave speed µ is bounded away from zero as shown in
Lemma 5.9. Eventually, alternative (i) and (ii) in Theorem 5.4 occur
simultaneously, by Theorem 5.10.

We apply the Lyapunov–Schmidt reduction, in order to establish the bifurcation for-
mulas. Let k P N be a fixed number and set

M :“ span tcos pxlq | l ‰ ku , N :“ kerDφF p0, µ˚
kq “ spantφ˚

ku.
Then, Cα

0,evenpTq “ M ‘N and a continuous projection onto the one-dimensional space
N is given by

Πφ “ 〈φ, φ˚
k〉L2

φ˚
k

where 〈¨, ¨〉L2
denotes the inner product in L2pTq. Let us recall the Lyapunov–Schmidt

reduction theorem from [17, Theorem I.2.3]:

Theorem 5.5 (Lyapunov–Schmidt reduction). There exists a neighborhood OˆY Ă U

of p0, µ˚
kq such that the problem

F pφ, µq “ 0 for pφ, µq P O ˆ Y (5.3)

is equivalent to the finite-dimensional problem

Φpεφ˚
k, µq :“ ΠF pεφ˚

k ` ψpεφ˚
k , µq, µq “ 0 (5.4)

for functions ψ P C8pON ˆ Y,Mq and ON Ă N an open neighborhood of the zero
function in N . One has that Φp0, µ˚

kq “ 0, ψp0, µ˚
kq “ 0, Dφψp0, µ˚

kq “ 0, and solving
problem (5.4) provides a solution

φ “ εφ˚
k ` ψpεφ˚

k , µq
of the infinite-dimensional problem (5.3).

Theorem 5.6 (Bifurcation formulas). The bifurcation curve found in Theorem 5.4
satisfies

φkpεq “ εφ˚
kpxq ´ ε2

2
kr

ˆ
1 ` 1

1 ´ 2´r
cos p2kxq

˙
`Opε3q (5.5)
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and

µkpεq “ µ˚
k ` ε2kr

3 ´ 21´r

8p1 ´ 2´rq `Opε3q (5.6)

in Cα
0,evenpTq ˆ R` as ε Ñ 0. In particular, :µkp0q ą 0 for any k ě 1, that is, Theorem

5.1 describes a supercritical pitchfork bifurcation.

Proof. Let us prove the bifurcation formula for µk first. The value 9µkp0q can be explicitly
computed using the bifurcation formula

9µkp0q “ ´1

2

〈

D2

φφF p0, µ˚
kqrφ˚

k , φ
˚
ks, φ˚

k

〉

L2

〈

D2

φµF p0, µ˚
kqφ˚

k , φ
˚
k

〉

L2

,

cf. [17, Section I.6]. We have

D2

φφF r0, µ˚
kspφ˚

k , φ
˚
kq “ pφ˚

kq2,
D2

φ,µF r0, µ˚
ksφ˚

k “ ´φ˚
k.

In view of
ş
T

pφ˚
kq3pxq dx “ 0, the first derivative of µ˚

k vanishes in zero. In this case the
second derivative is given by

:µkp0q “ ´1

3

〈

D3

φφφΦp0, µ˚
kqrφ˚

k , φ
˚
k , φ

˚
ks, φ˚

k

〉

L2
〈

D2

φµF p0, µ˚
kqφ˚

k , φ
˚
k

〉

L2

, (5.7)

where Φ P C8pON ˆ Y,Nq is the function defined in (5.4). We have that

DφΦpφ, µqφ˚
k “ ΠDφF pφ` ψpφ, µq, µq rφ˚

k `Dφψpφ, µqφ˚
ks ,

DφφΦpφ, µqrφ˚
k , φ

˚
ks

“ ΠD2

φφF pφ` ψpφ, µq, µq rφ˚
k `Dφψpφ, µqφ˚

k , φ
˚
k `Dφψpφ, µqφ˚

ks
` ΠDφF pφ ` ψpφ, µq, µqD2

φφψpφ, µqrφ˚
k , φ

˚
ks,

D3

φφφΦpφ, µqrφ˚
k , φ

˚
k , φ

˚
ks “ ΠDφF pφ ` ψpφ, µq, µqD3

φφφψpφ, µqrφ˚
k , φ

˚
k , φ

˚
ks

` 3ΠD2

φφF pφ ` ψpφ, µq, µqrφ˚
k `Dφψpφ, µqφ˚

k ,D
2

φφψpφ, µqrφ˚
k , φ

˚
kss,

in view of F being quadratic in φ and therefore D3

φφφF pφ, µq “ 0. Using that ψp0, µ˚
kq “

Dφψp0, µ˚
kqφ˚

k “ 0 we obtain that

D3

φφφΦp0, µ˚
kqrφ˚

k , φ
˚
k , φ

˚
ks “ ΠDφF p0, µ˚

kqD3

φφφψp0, µ˚
kqrφ˚

k , φ
˚
k , φ

˚
ks

` 3ΠD2

φφF p0, µ˚
kqrφ˚

k ,D
2

φφψp0, µ˚
kqrφ˚

k , φ
˚
kss.

Since N “ kerDφF p0, µ˚
kq and Π is the projection onto N , the above derivative reduces

to

D3

φφφΦp0, µ˚
kqrφ˚

k , φ
˚
k , φ

˚
ks “ 3Πφ˚

kD
2

φφψp0, µ˚
kqrφ˚

k , φ
˚
ks.

As in [17, Section 1.6] we use that DφF p0, µ˚
kq is an isomorphism on M to write

D2

φφψp0, µ˚
kqrφ˚

k , φ
˚
ks “ ´pDφF p0, µ˚

kqq´1p1 ´ ΠqD2

φφF p0, µ˚
kqrφ˚

k , φ
˚
ks

“ ´pDφF p0, µ˚
kqq´1p1 ´ Πqpφ˚

kq2

“ ´1

2
pDφF p0, µ˚

kqq´1 p1 ` cos p2xkqq

“ ´1

2

ˆ
1

µ˚
k

` cos p2xkq
µ˚
k ´ p2kq´r

˙
.

(5.8)
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We conclude that

D3

φφφΦp0, µ˚
kqrφ˚

k , φ
˚
k , φ

˚
ks “ ´3

2
φ˚
k

ˆ
1

µ˚
k

` 1

2pµ˚
k ´ p2kq´rq

˙
.

In view of the dominator in (5.7) being ´1, the second derivative of µk at zero is given
by

:µkp0q “ 1

2

ˆ
1

µ˚
k

` 1

2pµ˚
k ´ p2kq´rq

˙
“ kr

3 ´ 21´r

4p1 ´ 2´rq ą 0, for all r ą 1.

The formula (5.6) is now a direct consequence of a Maclaurin series expansion and
9µkp0q “ 0. Since :µkp0q ą 0, we conclude that the bifurcation curve describes a super-
critical pitchfork bifurcation.
Keeping in mind that φkp0q “ 0 and 9φkp0q “ φ˚

k, we are left to compute :φkp0q in order
to establish (5.5). We use that

φkpεq “ εφ˚
k ` ψpεφ˚

k , µkpεqq,
cf. [17, Chapter I.5]. It follows that

:φkp0q “D2

φφψp0, µ˚
kqrφ˚

k , φ
˚
ks ` 2D2

φµψp0, µ˚
kqrφ˚

k , 9µkp0qs `D2

µµψp0, µ˚
kqr 9µkp0q, 9µkp0qs

`Dµψp0, µ˚
kq 9µkp0q.

Since Dµψp0, µ˚
kq “ 0 and 9µkp0q “ 0, we obtain that

:φkp0q “ D2

φφψp0, µ˚
kqrφ˚

k , φ
˚
ks.

Thus, the claim follows from (5.8). �

Lemma 5.7. Any sequence of solutions pφn, µnqnPN Ă S to (4.2) with pµnqnPN bounded
has a subsequence which converges uniformly to a solution φ.

Proof. In view of (5.2) the boundedness of pµnqnPN implies that also pφnqnPN is uniformly
bounded in CpTq. In order to show that pφnqnPN has a convergent subsequence, we prove
that pφnqnPN is actually uniformly Hölder continuous. By compactness, it then has a
convergent subsequence in CpTq. From Theorem 3.6 it is known that Kr is α-Hölder
continuous for some α P p0, 1s. Since pφnqnPN is uniformly bounded, we have that
pKr ˚ φnqnPN is uniformly α-Hölder continuous. Recalling that

1

2
pφnpxq ´ φnpyqq2 ď |Kr ˚ φnpxq ´Kr ˚ φnpyq|

whenever φn ď µ, we deduce that pφnqnPN is uniformly α
2
-Hölder continuous. Thus,

pφn, µnqnPN has a convergent subsequence which allows us to choose a uniformly con-
vergent subsequences to a solution of (4.2). �

The remainder of the section is devoted to exclude alternative (iii) in Theorem 5.4 and
to prove that alternative (i) and (ii) occur simultaneously, which in particular implies
that the highest wave is reached as a limit of the global bifurcation curve.

Let

Kk :“ tφ P Cα
0,evenpTq : φ is 2π{k-periodic and nondecreasing in p´π{k, 0qu,

a closed cone in Cα
0

pTq.
Proposition 5.8. The solutions φkpsq, s ą 0 on the global bifurcation curve belong to
Kkzt0u and alternative (iii) in Theorem 5.4 does not occur. In particular, the bifurcation
curve pφkpsq, µkpsqq has no intersection with the trivial solution line for any s ą 0.

Proof. Due to [6, Theorem 9.2.2] the statement holds true if the following conditions
are satisfied

(a) Kk is a cone in a real Banach space.
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(b) pφkpεq, µkpεqq Ă Kk ˆ R provided ε is small enough.
(c) If µ P R and φ P kerDφF p0, µq X Kk, then φ “ αφ˚ for α ě 0 and µ “ µ˚

k.
(d) Each nontrivial point on the bifurcation curve which also belongs to Kk ˆ R is

an interior point of Kk ˆ R in S.

In view of the local bifurcation result in Theorem 5.1, we are left to verify condition
(d). Let pφ, µq P Kk ˆ R be a nontrivial solution on the bifurcation curve found in
Theorem 5.4. By Theorem 4.5, φ is smooth and together with Lemma 4.4, we have
that φ1 ą 0 on p´π, 0q and φ2p0q ă 0. Choose a solution ϕ lying within a δ ! 1 small
enough neighborhood in Cα

0
pTq such that ϕ ă µ and }φ ´ ϕ}Cα ă δ. In view of (4.4)

an iteration process on the regularity index yields that }φ ´ ϕ}C2 ă δ̃, where δ̃ ą 0

depends on δ and can be made arbitrarily small by choosing δ small enough. It follows
that for δ small enough ϕ ă µ is a smooth, even solution, nondecreasing on p´π

k
, 0q and

hence pφ, µq belongs to the interior of Kk ˆ R in S, which concludes the proof. �

Lemma 5.9. Along the bifurcation curve in Theorem 5.4 we have that

µpsq Á 1

uniformly for all s ě 0.

Proof. Let us assume for a contradiction that there exists a sequence psnqnPN P R`

with limnÑ8 sn “ 8 such that µpsnq Ñ 0 as n Ñ 8, while φpsnq Ñ φ0 as n Ñ 8
along the bifurcation curve found in Theorem 5.4. In view of Lemma 5.7, there exists
a subsequence of psnqnPN (not relabeled) such that φpsnq converges to a solution φ0 of
(5.1). Along the bifurcation curve we have that φpsnq ă µpsnq. Taking into account the
zero mean property of solutions of (5.1), it follows that φ0 “ 0 is the trivial solution.
But then Lemma 4.9 yields the contradiction

0 “ lim
nÑ8

pµpsnq ´ φpsnqpπqq ě λπ ą 0.

�

Theorem 5.10. In Theorem 5.4, alternative (i) and (ii) both occur.

Proof. Let pφkpsq, µkpsqq, s P R, the bifurcation curve found in Theorem 5.4. In view
of Proposition 5.8 we know that any solution along the bifurcation curve is even and
nondecreasing on p´π

k
, 0q. Moreover, alternative (iii) in Theorem 5.4 is excluded. That

is either alternative (i) or alternative (ii) in Theorem 5.4 occur. Let us assume first that
alternative (i) occurs, that is either }φkpsq}Cα Ñ 8 for some α P p1, 2q or |µkpsq| Ñ 8
as s Ñ 8. The former case implies alternative (ii) in view of Theorem 4.5. Since
φkpsq has zero mean and keeping in mind Lemma 4.10, it is clear that the second
option limsÑ8 |µkpsq| “ 8 can not happen unless we reach the trivial solution line,
which is excluded by Proposition 5.8. Suppose now that alternative (ii) occurs, but not
alternative (i). Then there exists a sequence pφkpsnq, µkpsnqqnPN in S satisfying φkpsnq ă
µ and limnÑ8 maxφkpsnq “ µ, while φkpsnq remains uniformly bounded in CαpTq for
α P p1, 2q and µ Á 1 by Lemma 5.9. But this is clearly a contradiction to Theorem 4.7.
We deduce that both, alternative (i) and alternative (ii) occur simultaneously. �

Now, we are at the end of our analysis and conclude our main result: Let pφkpsq, µkpsqq
be the global bifurcation curve found in Theorem 5.4 and let psnqnPN be a sequence in
R` tending to infinity. Due to our previous analysis (Lemma 4.10 and Proposition 5.8),
we know that pµkpsnqqnPN is bounded and bounded away from zero. In view of the µk-
dependent bound of φk we obtain that also pφkpsnqqnPN is bounded, whence Lemma 5.7
implies the existence of a converging subsequence (not relabeled) of pφkpsnq, µkpsnqqnPN.
Let us denote the limit by pφ̄, µ̄q. By Theorem 5.10 and Theorem 4.7 we conclude that
φ̄p0q “ µ̄ with φ̄ admitting precisely Lipschitz regularity at each crest, which proves the
main assertion Theorem 1.1.
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6. Application to the reduced Ostrovsky equation

In this section we show that our approach can be applied to traveling-waves of the
reduced Ostrovsky equation, which is given by

rut ` uuxsx ´ u “ 0 (6.1)

and arises in the context of long surface and internal gravity waves in a rotating fluid [18].
We are looking for 2π-periodic traveling-wave solutions upt, xq “ φpx´µtq, where µ ą 0

denotes the speed of the right-propagating wave. In this context equation (6.1) reduces
to „

1

2
φ2 ´ µφ



xx

´ φ “ 0. (6.2)

Let us emphasize that the existence of periodic traveling wave solutions of (6.1) is well-
known. Furthermore, there exists an explicit example of a 2π-periodic traveling-wave

with wave speed µ “ π2

9
of the form

φppxq “ 3x2 ´ π2

18
, (6.3)

which satisfies (6.2) point-wise on p´π, πq. It is easy to check that φp is precisely
Lipschitz continuous at its crest points located at πp2Z ` 1q and smooth elsewhere.

x

π2

9

´π π

Figure 3. Explicit 2π-periodic, peaked traveling-wave solution for the
reduced Ostrovsky equation (6.1) obtained via formula (6.3) by periodic
extension.

Recall that any periodic solution of (6.2) has necessarily zero mean. Therefore, working
in suitable spaces restricted to their zero mean functions, the pseudo differential operator
B´2
x can be defined uniquely in terms of a Fourier multiplier. We show in Lemma 6.1

that the steady reduced Ostrovsky equation (6.2) can be reformulated in nonlocal form
as

´ µφ` Lφ` 1

2

´
φ2 ´ xφ2p0q

¯
“ 0. (6.4)

Here L denotes the Fourier multiplier with symbol mpkq “ k´2 for k ‰ 0 and mp0q “ 0.

Recall that any function f P CαpTq for α ą 1

2
has an absolutely convergent Fourier

series, that is ÿ

kPZ

|f̂pkq| ă 8,

and the Fourier representation of f is given by

fpxq “
ÿ

kPZ

f̂ pkq eixk.

Lemma 6.1. Let α ą 1

2
. A function φ P Cα

0
pTq is a solution of (6.2) if and only if φ

solves

´µφ` L2φ` 1

2

´
φ2 ´ xφ2p0q

¯
“ 0,
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where

Lφpxq :“
ÿ

k‰0

k´2φ̂pkqeixk.

Proof. Notice that φ P Cα
0

pTq is a solution of (6.2) if and only if
ż π

´π

„
1

2
φ2pxq ´ µφpxq


ψxxpxq dx “

ż π

´π

φpxqψpxq dx

for all ψ P C8
c p´π, πq, which is equivalent to

F

ˆ„
1

2
φ2 ´ µφ


ψxx

˙
p0q “ F pφψq p0q.

Using the property that the Fourier transformation translates products into convolution,
we can write

F

ˆ
1

2
φ2 ´ µφ

˙
˚ F pψxxq p0q “ φ̂ ˚ ψ̂p0q.

In view of φ having zero mean and therefore φ̂p0q “ 0, we deduce that φ P Cα
0

pTq is a
solution to (6.2) if and only if

´
ÿ

k‰0

F

ˆ
1

2
φ2 ´ µφ

˙
p´kqk2ψ̂pkq “

ÿ

k‰0

φ̂p´kqψ̂pkq

for all ψ P C8
c p´π, πq. In particular,

1

2
xφ2pkq ´ µφ̂pkq ` k´2φ̂pkq “ 0 for all k ‰ 0,

which is equivalent to

ÿ

k‰0

ˆ
1

2
xφ2pkq ´ µφ̂pkq ` k´2φ̂pkq

˙
eixk “ 0.

Due to the fact that φ has zero mean, the above equation can be rewritten as

´µφ` Lφ ` 1

2

´
φ2 ´ xφ2p0q

¯
“ 0,

which proves the statement.
�

We proved in Theorem 4.7 that any even, periodic, bounded solution φ ď µ, which is
monotone on a half period, is Lipschitz continuous on R, which guarantees by Lemma 6.1
that all solutions of (6.4) we consider here are indeed solutions of the reduced Ostrovsky
equation.

As a consequence of our main result Theorem 1.1, we obtain the following corollary:

Corollary 6.2 (Highest wave for the reduced Ostrovsky equation). For each integer
k ě 1 there exists a global bifurcation branch

s ÞÑ pφkpsq, µkpsqq, s ą 0,

of nontrivial, 2π
k

-periodic, smooth, even solutions to the steady reduced Ostrovsky equa-

tion (6.2) emerging from the bifurcation point p0, k´2q. Moreover, given any unbounded
sequence psnqnPN of positive numbers sn, there exists a subsequence of pφkpsnqqnPN, which
converges uniformly to a limiting traveling-wave solution pφ̄k, µ̄kq that solves (6.2) and
satisfies

φ̄kp0q “ µ̄k.

The limiting wave is strictly increasing on p´π
k
, 0q and is exactly Lipschitz at x P 2π

k
Z.
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In case of the reduced Ostrovsky equation, we know even more about the bifurcation
diagram. Using methods from dynamical systems, the authors of [13, 14] are able to
prove that the peaked, periodic traveling-wave (6.3) for the reduced Ostrovsky equation
is the unique nonsmooth 2π-periodic traveling-wave solution ([14, Lemma 2]). Moreover,
from [13, Lemma 3] we obtain the following a priori bound on the wave speed for
nontrivial, 2π-periodic traveling-wave solutions of (6.1):

Lemma 6.3 ([13], Lemma 3). If φ is a nontrivial, smooth, 2π
k

-periodic, traveling-wave
solution of the reduced Ostrovsky equation, then the wave speed µ satisfies the bound

µ P k´2

ˆ
1,
π2

9

˙
.

max φ

k´2

µ

max φ “ µ

k´2 π
2

9

Figure 4. Sketch for the global bifurcation diagram for 2π
k

-periodic,
even solutions of the reduced Ostrovsky equation reaching the unique
limiting highest wave. Outside of the shaded region, there exist no non-
trivial 2π

k
-periodic, smooth traveling-wave solutions of (6.1).

Remark 6.4. Notice, that in the class of 2π-periodic solutions, the range for the wave
speed µ supporting nontrivial traveling-wave solutions of the reduced Ostrovsky equa-

tion is given by p1, π2

9
q, where µ “ 1 is the wave speed from which nontrivial, 2π-periodic

solutions bifurcate and µ “ π2

9
is exactly the wave speed corresponding to the highest

peaked wave in (6.3).

Remark 6.5. Regarding the 2π-periodic, nontrivial traveling-wave solutions of (6.1)
on the global bifurcation branch from Corollary 6.2, we have that Lemma 4.10 and
Lemma 5.9, proved in the previous sections, guarantee that the wave speed is a priori
bounded by

µ P
ˆ
M,

4π3

9
?
3

˙
for some M P p0, 1s.

Certainly this bound is if far from the optimal bound provided by [13] in Lemma 6.3.
Thus, there is still room for improvement in our estimates.
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