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SPARSE COMPRESSION OF EXPECTED SOLUTION OPERATORS

MICHAEL FEISCHL AND DANIEL PETERSEIM

Abstract. We show that the expected solution operator of prototypical linear el-
liptic partial differential operators with random coefficients is well approximated by
a computable sparse matrix. This result is based on a random localized orthogo-
nal multiresolution decomposition of the solution space that allows both the sparse
approximate inversion of the random operator represented in this basis as well as
its stochastic averaging. The approximate expected solution operator can be inter-
preted in terms of classical Haar wavelets. When combined with a suitable sampling
approach for the expectation, this construction leads to an efficient method for com-
puting a sparse representation of the expected solution operator.

1. Introduction

For a random (or parameterized) family of prototypical linear elliptic partial differ-
ential operators A(ω) = − div(A(ω)∇•) and a given deterministic right-hand side f ,
we consider the family of solutions

u(ω) := A(ω)−1f

with events ω ∈ Ω in some probability space Ω. We define the harmonically averaged
operator

A :=
(
E[A(ω)−1]

)−1

.

The idea behind this definition is that E(u) satisfies

E[u] = A−1f.

In this sense, A may be understood as a stochastically homogenized operator and A−1

is the effective solution operator. Note that this definition does not rely on probabilistic
structures of the random diffusion coefficient A such as stationarity, ergodicity or any
characteristic length of correlation. However, we shall emphasize that A does not
coincide with the partial differential operator that would result from the standard
theory of stochastic homogenization (under stationarity and ergodicity) [25, 29, 38]
(see e.g. [3], [15, 7, 16], [1] for quantitative results). Recent works on discrete random
problems on Zd with i.i.d. edge conductivies indicate that A is rather a non-local
integral operator [2, 22]. The goal of the present work is to show that, even in the
more general PDE setup of this paper without any assumptions on the distribution
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of the random coefficient, the expected solution operator A−1 can be represented
accurately by a sparse matrices Rδ in the sense that

‖A−1 −Rδ‖L2(D)→L2(D) ≤ δ

for any δ > 0 while the number of non-zero entries of Rδ scales like δ−d up to
logarithmic-in-δ terms (see Theorem 10).

The sparse matrix representation of A−1 is based on multiresolution decomposi-
tions of the energy space in the spirit of numerical homogenization by localized or-
thogonal decomposition (LOD) [26, 19, 30, 12, 23, 13] and, in particular, its multi-
scale generalization that is popularized under the name gamblets [27]. The latter
decomposition of [27] is slightly modified by linking it to classical Haar wavelets via
L2-orthogonal projections and conversely by corrections involving the solution opera-
tor (see Section 3). The resulting problem-dependent multiresolution decompositions
block-diagonalize the random operator A for any event in the probability space (see
Section 4). The block-diagonal representations (with sparse blocks) are well condi-
tioned and, hence, easily inverted to high accuracy using a few steps of standard linear
iterative solvers. The sparsity of the inverted blocks is preserved to the degree that it
deteriorates only logarithmically with the accuracy.

While the sparsity pattern of the inverted block-diagonal operator is independent
of the stochastic parameter and, hence, not affected when taking the expectation (or
any sample mean) the resulting object cannot be interpreted in a known basis. This
issue is circumvented by reinterpreting the approximate inverse stiffness matrices in
terms of the deterministic Haar basis before stochastic averaging. This leads to an ac-
curate representation of A−1 in terms of piecewise constant functions. Sparsity is not
directly preserved by this transformation but can be retained by some appropriate hy-
perbolic cross truncation which is justified by scaling properties of the multiresolution
decomposition (see Section 5).

Apart from the mathematical question of sparse approximability of the expected
operator, the above construction leads to a computationally efficient method for ap-
proximating A−1 when combined with any sampling approach for the approximation
of the expectation (see Section 6). This new sparse compression algorithm for the
direct discretization of A−1 may be beneficial if we want to compute E[u] for mul-
tiple right-hand sides f . This, for example, is the case if we have an independent
probability space ξ ∈ Ξ influencing f = f(ξ) as well as the corresponding solu-
tion U(ω, ξ) := A(ω)−1f(ξ). Then, we might be interested in the average behavior
EΩ×Ξ[U ] which is the solution of

EΩ×Ξ[U ] = EΞ[A−1f ] = A−1EΞ[f ]. (1.1)

As a practical example for this might serve the Darcy flow as a model of ground water
flow. Here, A is a random diffusion process modeling the unknown diffusion coefficient
of the ground material. The right-hand side f would be the random (unknown)
injection of pollutants into the ground water. Ultimately, the user would be interested
in the average distribution of pollutants in the ground. Obviously, computing the
right-hand side of (1.1) requires the user to sample Ω and Ξ successively, whereas
computing the left-hand side of (1.1) forces the user to sample the much larger product
space Ω × Ξ. Therefore, an accurate discretization of A can help saving significant
computational cost.



SPARSE COMPRESSION OF EXPECTED SOLUTION OPERATORS 3

2. Model problem

We consider some prototypical linear second order elliptic partial differential equa-
tion with random diffusion coefficient. Let (Ω,F ,P) be a probability space with set
of events Ω, σ-algebra F ⊆ 2Ω and probability measure P. The expectation operator
is denoted by E. Let D ⊆ Rd for d ∈ {1, 2, 3} be a bounded Lipschitz polytope with
diameter of order 1. The set of admissible coefficients reads

M(D, γmin, γmax) =

{
A ∈ L∞(D;Rd×d

sym) s.t. γmin|ξ|2 ≤ (A(x)ξ) · ξ ≤ γmax|ξ|2

for a.e. x ∈ D and all ξ ∈ Rd

}
for given uniform spectral bounds 0 < γmin ≤ γmax < ∞. Here, Rd×d

sym denotes the set
of symmetric d× d matrices. Let A be anM(D, γmin, γmax)-valued random field with
γmax > γmin > 0. Note that we do not make any structural assumptions regarding the
distribution of A. Moreover, realizations in M(D, γmin, γmax) are fairly free to vary
within the bounds γmin and γmax without any conditions on frequencies of variation or
smoothness.

Denote the energy space by V := H1
0 (D) and let f ∈ V ∗ = H−1(D) be deterministic.

The prototypical second order elliptic variational problem seeks a V -valued random
field u such that, for almost all ω ∈ Ω,

aω(u(ω), v) :=

∫
D

(A(ω)(x)∇u(ω)(x)) · ∇v(x) dx = f(v) for all v ∈ V. (2.1)

The bilinear from aω depends continuously on the coefficientA(ω) ∈M(D, γmin, γmax)
and, particularly, is measurable as a function of ω. Hence, the reformulation of this
problem in the Hilbert space L2(Ω;V ) of V -valued random fields with finite second
moments shows well-posedness in the sense that there exists a unique solution u ∈
L2(Ω;V ) with

‖∇u‖L2(Ω;V ) :=

(∫
Ω

∫
D

|∇(u(ω))(x)|2 dx dP(ω)

)1/2

≤ γ−1
min‖f‖V ∗ .

To connect the model problem to the operator setting of the introduction, we shall
introduce the random operator A : Ω→ L(V, V ∗) by

〈A(ω)u, v〉V ∗,V := aω(u, v)

for functions u, v ∈ V and ω ∈ Ω. Then the model problem (2.1) can be rephrased as

A(ω)u(ω) = f for almost all ω ∈ Ω.

3. Coefficient-adapted hierarchical bases

Let T`, ` = 0, . . . , L denote a sequence of uniform refinements with mesh-size h` of
some initial mesh T0 of D. We allow fairly general meshes in the sense that we only
require a reference element Tref together with a family of uniformly bi-Lipschitz maps
ΨT : Tref → T for all elements T ∈ T`, ` = 0, . . . , L. Straightforward examples are
simplicial meshes generated from an initial triangulation by red refinement (or newest
vertex bisection) or quadrilateral meshes generated by subdividing the elements into
2d new elements. Particularly, hanging nodes do not pose problems as long as the
other properties are observed.

The number of levels (or scales) L will typically be chosen proportional to the
modulus of some logarithm of the desired accuracy 1 & δ > 0. We assume h`+1 ≤ h`/2.
Note that any other fixed factor of mesh width reduction strictly smaller than one
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would do the job. Define the set of descendants of an element T ∈ T` by ref(T ) :={
T ′ ∈ T`+1 : T ′ ⊆ T

}
. For each T ∈

⋃L−1
`=0 T`, we pick piecewise constant functions

φT,1, φT,2, . . . , φT,#ref(T ) ∈ P 0(ref(T )) such that they are pairwise L2(T )-orthogonal
and

∫
T
φT,j dx = 0 for all j = 1, . . . ,#ref(T ). With the indicator functions χ(·), we

then define H0 :=
{
χT : T ∈ T0

}
and for ` ≥ 1

H` :=
⋃

T∈T`−1

{
φT,j : j = 1, . . . ,#ref(T )

}
. (3.1)

We define a Haar basis via

H :=
L⋃
`=0

H`.

Lemma 1. The basis H is L2-orthogonal and local in the sense that φ ∈ H` satisfies
supp(w) = T for some T ∈ T`−1 or T ∈ T0 for ` = 0.

Proof. If k = ` then the interiors of the supports of any φ1 6= φ2 ∈ Hk are disjoint
which implies L2(D) orthogonality. If k < `, we have that φk is constant on supp(φ`).
Since

∫
D
φ` dx = 0 by definition, this concludes the proof of L2-orthogonality. Locality

follows readily from the construction. �

Remark 2. For uniform Cartesian meshes, H is the Haar basis. The choice of the
2d − 1 generating functions follows the standard procedure for Haar wavelets (see e.g.
[35]). The construction is applicable to general meshes that are not based on tensor-
product structures.

Due to the lack of V -conformity, the basis H is not suited for approximating the
solution of model problem (2.1) in a Galerkin approach. It will, however, serve as
a companion of certain regularized hierarchical bases B(ω) =

⋃L
`=0 B`(ω) ⊂ V to be

defined below. The new bases are connected toH (and to each other) via L2-orthogonal
projections Π` : V → P 0(T`) onto T`-piecewise constant functions by

Π`B`(ω) = H` (3.2)

for all ` = 0, 1, . . . , L and ω ∈ Ω. Among the infinitely many possible choices, we
define the elements of B`(ω) by minimizing the energies 1

2
aω(•, •) in the closed affine

space of preimages of Π` restricted to V , i.e., given φ ∈ H` and ω ∈ Ω, we define
bφ(ω) ∈ B`(ω) by

bφ(ω) := argmin
v∈V

1
2
aω(v, v) subject to Π`v = φ. (3.3)

This construction is strongly inspired by numerical homogenization where this sort
of orthogonalization of scales in the energy space paved the way to a scheme that
works with arbitrary rough coefficients beyond periodicity or scale separation [26,
19, 30, 23]. While most results in the context of this socalled localized orthogonal
decomposition (LOD) were based on a conforming companion (the Faber basis), early
works also addressed the possibility of using discontinuous companions [8, 9]. The
dG version is very useful when taking the step from two levels or scales in numerical
homogenization to actual multilevel decomposition. This was first shown in [27] where
so-called gamblets are introduced; see also [34, 20, 21, 28]. In particular, piecewise
constants induce a natural hierarchical structure with nested kernels of local projection
operators (here the Π`) that is not easily achieved with H1-conforming functions. The
construction of the present paper coincides with the gamblet decomposition of [27]
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in the sense that the approximation spaces on all levels coincide in some idealized
deterministic setting. However, our particular choice of basis is connected to the Haar-
wavelets which simplifies the derivation and decouples the computation of the basis
across levels so that error amplification through nested iterations is avoided. More
importantly, our particular choice of basis is crucial in the context of the random
problem at hand because it is exactly the link to the deterministic Haar basis that
allows a meaningful interpretation of the averaged object.

We shall express the mapping of bases encoded in (3.2)–(3.3) in terms of two concate-
nated linear operators. This will be useful for both analysis and actual computations.
First, let Π̃` : L2(D)→ V be such that

Π` ◦ Π̃` = id on spanH` (3.4)

In particular, this means that Π̃` maps any φ ∈ H` to some function that is admissible
in the sense of the minimization problem (3.3). The operators Π̃` are easily constructed
using nonnegative bubble functions χ̃T supported on a element T ∈ T` with Π`χ̃T = χT .
Then

Π̃`v =
∑
T∈T`

(Π`v)|T χ̃T .

There is even locality in the sense of

supp Π̃`φ ⊂ suppφ (3.5)

for all φ ∈ spanH`. The bubbles can be chosen such that, for some C > 0,

‖Π̃`φ‖Hm(D) ≤ Ch−m‖φ‖L2(D) (3.6)

holds for m ∈ {0, 1}.
The second step involves aω-orthogonal projections C`(ω) onto the closed subspaces

W` := kernel(Π`|V ) = kernel(Π̃`|V ) (3.7)

of V . Given any u ∈ V , define C`(ω)u ∈ W` as the unique solution of the variational
problem

aω(C`(ω)u, v) = aω(u, v) for all v ∈ W`. (3.8)

With the two operators Π̃` and C` we rewrite (3.3) as

bφ = (id− C`)Π̃`φ

for all φ ∈ H` and ` = 0, 1, . . . , L. Actually, for any ω ∈ Ω, (id − C`(ω))Π̃` defines a
bijection from H to B(ω) with left inverse Π`.

While the L2-orthogonality of the Haar basis is not preserved under these mappings,
we have achieved a-orthogonality between the levels of the hierarchies.

Lemma 3 (a-orthogonality and scaling of B). Any two functions bk ∈ Bk(ω) and
b` ∈ B`(ω) with k 6= ` satisfy

aω(bk, b`) = 0.

Moreover,
C−1‖φk‖L2(D) ≤ C−1‖bk‖L2(D) ≤ hk|||bk|||ω ≤ C‖φk‖L2(D)

with some generic constant C > 0 independent of bk, the mesh sizes and the event.
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Proof. Since

Πk(id− C`(ω))Π̃`H` = ΠkΠ`(id− C`(ω))Π̃`H` = ΠkH` = {0} (3.9)

whenever k < `, we have that
B`(ω) ⊂ Wk.

This and the orthogonality
aω(Bk(ω),Wk) = 0

from (3.8) proves the orthogonality. The scaling follows from Πk−1Bk = {0} (which is
a special instance of (3.9)), the Poincaré inequality, (3.6), and the construction. More
precisely,
‖φk‖L2(D) = ‖Πkbk‖L2(D) ≤ ‖bk‖L2(D) = ‖(1− Πk−1)bk‖L2(D) . hk|||bk|||ω

= hk|||(1− C(ω))Π̃kφk|||ω ≤ hk|||Π̃kφk|||ω . ‖φk‖L2(D).
(3.10)

This concludes the proof. �

We shall emphasize that, in general, the basis elements bφ(ω) have global support
in D. However, their moduli decay exponentially away from suppφ in scales of h`,

‖bφ(ω)‖H1(D\BR(suppφ)) ≤ Ce−cR/h`‖bφ(ω)‖H1(D) (3.11)

with some generic constants c, C > 0 that solely depend on the contrast γmax/γmin and
the shape regularity of the mesh T` but not on the mesh size. This is a well established
result of numerical homogenization since [26] and valid in many different settings (see
[30] and references therein). Here, we will provide some elements of a more recent
constructive proof of the decay that provides local approximations by the theory of
preconditioned iterative [23] which in turn is based on [24].

We start with introducing an overlapping decomposition of D that we will later use
to define the local preconditioner. Let the level ` ∈ {0, 1, . . . , L} and the event ω ∈ Ω
be arbitrary but fixed. For any vertex of the mesh (including boundary vertices),
define the patch

Dz :=
⋃
{T ∈ T` | z ∈ T}

and a corresponding local subspace

Vz :=
{
v ∈ V | v = 0 in D \Dz

}
⊂ V.

Note that Vz is equal to H1
0 (DZ) up to extension by zero outside of Dz. Under the

complementary projection (id− Π̃`) these subspaces are turned into subspaces

Wz := (id− Π̃`)Vz =
{
v ∈ W` | v = 0 in D \Dz

}
of W`. For each z ∈ N (T`) we define the corresponding aω-orthogonal projection
Pz(ω) : V → Wz ⊂ W` ⊂ V by the variational problem

aω(Pz(ω)u,w) = aω(u,w) for all w ∈ Wz.

The sum of these local Ritz projections

P`(ω) :=
∑

z∈N (T`)
Pz(ω) (3.12)

defines a bounded linear operator from V to W` that can be seen as a preconditioned
version of the correction operator C`(ω). The operatorP`(ω) is quasi-local with respect
to the mesh T` since information can only propagate over distances of order h` each
time P`(ω) is applied.

The remaining part of this section aims to show that the preconditioned operators
P`(ω) serve well within iterative solvers for linear equations. Following the abstract
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theory for subspace correction or additive Schwarz methods for operator equations
[24] (see also [36, 37] for the matrix case) we need to verify that the energy norm of
a function u ∈ V can be bounded in terms of the sum of local contributions from VT
and, for one specific decomposition, we need a reverse estimate.

Lemma 4. For every decomposition u =
∑

z∈N (T`) uz of u ∈ W` with uz ∈ Wz we have

‖∇u‖2
L2(D) ≤ K2

∑
z∈N (T`)

‖∇uz‖2
L2(D)

with constant K2 > 0 depending only on the shape regularity of T`. With the hat-
function λz associated with the node z in T`, the one decomposition

∑
z∈N (T`) uz = u

with uz := (1− Π̃`)(λzu) ∈ Wz for z ∈ N (T`) satisfies∑
z∈N (T`)

‖∇uz‖2
L2(D) ≤ K1 ‖∇u‖2

L2(D)

with constant K1 > 0 that only depends on the shape regularity of T` and the contrast
γmax/γmin.

Proof. With K2 the maximum number of elements of T` covered by one patch Dz for
z ∈ N (T`), we can estimate on a single element,

‖∇u‖2
L2(T ) = ‖

∑
z∈N (T`)

∇uz‖2
L2(T ) ≤ K2

∑
z∈N (T`)

‖∇uz‖2
L2(T ).

Due to shape regularity of T`, K2 is independent of h`. A summation over all T yields
the first inequality. The second one follows from the H1-stability of Π̃` on W`, the
product rule, (3.6), and the Poincaré inequality. For further details, we refer to [23,
Lemma 3.1] where these results are proved in detail in a very similar setting. �

Lemma 4 implies that

1/K1aω(v, v) ≤ aω(P`(ω)v, v) ≤ K2aω(v, v) (3.13)

holds for functions v in the kernelW` of Π`|V and any ω ∈ Ω (cf. [23, Eq. (3.11)]). Fol-
lowing the construction of [24, 23] there exists a localized linear approximation Cδ`(ω)
based on O(log(1/δ)) steps of some linear iterative solver applied to the preconditioned
corrector problems [23, Eqns. (3.8) or (3.18)] such that

‖∇(C`(ω)u− Cδ`(ω)u)‖L2(D) ≤ δ‖∇C`(ω)u‖L2(D); (3.14)

see [23, Lemma 3.2]. With the approximate correctors, we can define modified (local-
ized) bases

Bδ(ω) :=
L⋃
`=0

Bδ` (ω) :=
L⋃
`=0

{
bδφ(ω) : φ ∈ H`

}
,

where

bδφ(ω) := (id− Cδ`(ω))Π̃`φ

for φ ∈ H`. The previous discussion shows that there exist constants C1, C2 > 0 that
only depend on the shape regularity of the meshes T` and the contrast γmax/γmin of
the coefficients such that

|||bφ(ω)− bδφ(ω)|||ω ≤ C1δ|||bφ(ω)|||ω
while

supp bδφ(ω) ⊂
{
x ∈ D : dist(x, supp φ) ≤ C2| log(δ)|h`

}
. (3.15)
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4. Sparse stiffness matrices and basis transformations

With the localized bases of the previous section, we can now study the sparsity of
corresponding stiffness matrices and their inverses. We define the level function lev(·)
according to the Haar basis by lev(b) = lev(bδ) = lev(φ) = ` for b = bφ ∈ B`(ω),
bδ = bδφ ∈ Bδ` (ω) and φ ∈ H`. We order the basis functions in B, Bδ, and H such that
lev is monotonically increasing in the index running from 1 to N := #B = #Bδ =
#H. With this convention, we may also write lev(i) := lev(bi) = lev(bδi ) = lev(φi).
Moreover, we define a (semi-)metric d(·, ·) on {1, . . . , N} by

d(i, j) :=
dist(mid(φi),mid(φj))

hmin{lev(i),lev(j)}
,

where mid(w) defines the barycenter of supp(w).
Define the stiffness matrices S(ω) ∈ RN×N associated with the bases B(ω) by

S(ω)ij := aω

(
bj
|||bj|||ω

,
bi
|||bi|||ω

)
.

The orthogonality of the bases B motivates the approximation of the stiffness matrices
by block-diagonal ones even after localization. Given δ > 0, define the block-diagonal
stiffness matrices Sδ(ω) ∈ RN×N by

Sδ(ω)ij :=

{
aω
( bδj
|||bδj |||ω

,
bδi
|||bδi |||ω

)
for lev(i) = lev(j),

0 else.

Lemma 5. There exists a constant C > 0 that depends only on D and the shape
regularity of T0 such that, for any ω ∈ Ω,

‖S(ω)− Sδ(ω)‖2 ≤ Cδ.

Moreover, there exists a constant ζ > 0 which depends only on D such that

d(i, j) > ζ(| log(δ)|+ 1) or lev(i) 6= lev(j) =⇒ Sδij(ω) = 0, (4.1)

in particular, the number of nonzero entries nnz(Sδ(ω)) . N(1 + | log δ|)d is bounded
uniformly in ω.

Proof. The sparsity of the diagonal blocks follows from (3.15). For the proof of the
error bound, define

S̃
δ
(ω)ij :=

{
aω
( bj
|||bj |||ω ,

bδi
|||bδi |||ω

)
for lev(i) = lev(j),

0 else.

Since |Sij − S̃
δ

ij| = 0 whenever lev(i) 6= lev(j) it suffices to bound the errors related
to the diagonal blocks indexed by ` = 1, 2, . . . , L. We have for any vectors x, y ∈ R#Bδ`

that

x · (S`(ω)− S̃
δ

`(ω))y = aω

( ∑
lev(i)=`

bi
|||bi|||ω

xi , (Cδ` − C`)Π̃`

∑
lev(j)=`

φj
|||bj|||ω

yi

)
.

With (3.14) and because C` is H1-bounded by construction, this implies

|x · (S`(ω)− S̃
δ

`(ω))y| . δ

∥∥∥∥Π̃`

∑
lev(i)=`

φi
|||bi|||ω

xi

∥∥∥∥
H1(D)

∥∥∥∥Π̃`

∑
lev(j)=`

φj
|||bj|||ω

yj

∥∥∥∥
H1(D)

.
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The construction of Π̃` reveals that, for any v ∈ spanH`, ‖Π̃`v‖H1(D) . h−1
` ‖v‖L2(D).

Since |||bi|||ω ' h−1
` ‖φi‖L2(D) (by Lemma 3), there holds

|x · (S`(ω)− S̃
δ

`(ω))y| . δ

∥∥∥∥ ∑
lev(i)=`

φi
‖φi‖L2(D)

xi

∥∥∥∥
L2(D)

∥∥∥∥ ∑
lev(j)=`

φj
‖φj‖L2(D)

yj

∥∥∥∥
L2(D)

' δ‖x‖`2‖y‖`2 .

The same arguments show |x · (Sδ`(ω) − S̃
δ

`(ω))y| . δ‖x‖`2‖y‖`2 and the triangle
inequality readily proves the assertion. �

Lemma 6. The normalized set B = B(ω) or B = Bδ(ω) for some ω ∈ Ω is a Riesz
bases in the sense that

C−1
∑
b∈B

α2
b ≤

∥∥∥∥∑
b∈B

αb
b

|||b|||ω

∥∥∥∥2

H1(D)

≤ C
∑
b∈B

α2
b

holds with some constant C > 0 which depends only on D and the fact that δ2L . 1.

Proof. Since ‖ ·‖H1(D) and ||| · |||ω are equivalent uniformly in ω and the B(ω) is aω(·, ·)-
orthogonal across the levels, it suffices to consider one level k ∈ {1, . . . , L}. For this
on level, the results follows from the L2(D)-orthogonality of the Haar basis, (3.10)
(which remains valid when replacing bk by any linear combination of Bk(ω) functions
and φk by the corresponding linear combination of Hk functions), and proper rescaling
by normalization. To see the result for B = Bδ(ω), note that Lemma 5 imlies∥∥∥∥ ∑

bδ∈Bδ` (ω)

αbδ
bδ

|||bδ|||ω

∥∥∥∥2

H1(D)

' Sδ`(ω)α · α ' S`(ω)α · α± δ‖α‖2
`2
' (1± δ)‖α‖2

`2

for δ . 1. As in the proof of Lemma 5, we see

aω

( ∑
bδ∈Bδ` (ω)

αbδ
bδ

|||bδ|||ω
,
∑

bδ∈Bδk(ω)

βbδ
bδ

|||bδ|||ω

)
= aω

(
(Cδ` − C`)Π̃`

∑
bδφ∈B

δ
` (ω)

βbδφ
φ

|||bδφ|||ω
, (Cδ` − C`)Π̃`

∑
bδφ∈B

δ
k(ω)

αbδφ

φ

|||bδφ|||ω

)
. δ2‖α‖`2‖β‖`2 .

Altogether, this shows∥∥∥∥ ∑
bδ∈Bδ(ω)

αbδ
bδ

|||bδ|||ω

∥∥∥∥2

H1(D)

'
L∑
`=1

(1± δ)‖α|Bδ`‖
2
`2
± δ2

L∑
i,j=1
i 6=j

‖α|Bδi ‖`2‖α|Bδj‖`2

' (1± δ ± δ2L)‖α‖2
`2

and concludes the proof. �

In the remaining part of this section we analyze the properties of a certain matrix
representation of the L2(D)-orthogonal projections Π`. Given ω ∈ Ω, define the matrix
T (ω) ∈ RN×N by

T ij(ω) :=
(bj, φi)L2(D)

|||bj|||ω‖φi‖2
L2(D)

.
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Given some v =
∑N

i=1 αi
bi
|||bi|||ω with ΠLv =

∑N
i=1 βi

φi
‖φi‖L2(D)

. Then, by definition

βi =
(ΠLv, φi)

‖φi‖2
L2(D)

=
N∑
j=1

αjT ij = (Tα)i,

i.e., β = T (ω)α. Given δ > 0, a truncated approximation T δ(ω) of T (ω) is defined by

T δ
ij(ω) :=


(bδj ,φi)L2(D)

|||bδj |||ω‖φi‖2L2(D)

if lev(j) ≤ lev(i),

0 otherwise,

for any i, j ∈ {1, . . . , N}. T δ(ω) is a sparse lower block-triangular matrix and the next
lemma shows that the error of truncation is at most proportional to δ. To explore the
block-structure of matrices we shall introduce the following notation. For any matrix
K ∈ RN×N , we define sub-blocks K(`,k) ∈ R#H`×#Hk according to the level structure
by

K(`,k) := K|{
(i,j) : lev(i)=`, lev(j)=k

}.
Thus, we may write

K =


K(0,0) K(0,1) · · · K(0,L)

K(1,0) K(1,1) · · · K(1,L)
...

... . . . ...
K(L,0) K(L,1) · · · K(L,L)

 .

Lemma 7. For any δ > 0,

‖T (ω)− T δ(ω)‖2 ≤ CLδ

and, for 0 ≤ ` ≤ k ≤ L

‖T δ(ω)(k,`)‖2 ≤ Chk. (4.2)

Moreover, T δ is lower block-triangular with sparse blocks, more precisely,(
lev(j) ≥ lev(i) and i 6= j

)
or d(i, j) > ζ(1 + | log(δ)|) =⇒ T δ

ij = 0,

where ζ > 0 is the bandwidth from Lemma 5. The number of nonzero entries per block
is bounded by nnz(T δ(ω)(k,`)) . #Hk(1 + | log δ|)d.

Proof. We see immediately T ij(ω) = 0 for all lev(j) ≥ lev(i) and i 6= j since

(bj, φi)L2(D) = (Πlev(φi)bj, φi)L2(D) = (φj, φi)L2(D) = 0.

Since supp(bδi ) ∩ supp(φj) = ∅ as soon as d(i, j) & | log(δ)|, there is some ζ > 0 which
depends only on D such that T (ω)ij = 0 for all d(i, j) > ζ(1 + | log(δ)|).

For any vectors x ∈ R#Bδk and y ∈ R#Bδ` , we have

x · (T (k,`) − T δ
(k,`))y =

( ∑
lev(i)=k

φi
‖φi‖L2(D)

xi, (Cδ` − C`)Π̃`

∑
lev(j)=`

φj
|||bj|||ω

yj

)
L2(D)

.

Since T (k,`) 6= 0 implies k ≥ `, there holds for all T`−1-piecewise constants c`−1

|x · (T (k,`) − T δ
(k,`))y|

.

∥∥∥∥ ∑
lev(i)=k

φi
‖φi‖L2(D)

xi

∥∥∥∥
L2(D)

∥∥∥∥(Cδ` − C`)Π̃`

∑
lev(j)=`

φj
|||bj|||ω

yj − c`−1

∥∥∥∥
L2(D)

.
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Choosing c`−1 appropriately, we obtain

|x · (T (k,`) − T δ
(k,`))y| . ‖x‖`2

∥∥∥∥(Cδ` − C`)Π̃`

∑
lev(j)=`

φj
|||bj|||ω

yj

∥∥∥∥
H1(D)

.

As in the proof of Lemma 5, we see ‖T (ω)(`,k) − T δ(ω)(`,k)‖2 . δ. Summing up over
the levels proves ‖T (ω)− T δ(ω)‖2 . Lδ.

To see (4.2), note that w :=
∑

φi∈Hk αiφi and b :=
∑

bj∈B` βjb
δ
j satisfy

αTT δ(ω)β = (w, b)L2(D) = ((1− Πk)w, b)L2(D) = (w, (1− Πk)b)L2(D)

. hk‖w‖L2(D)|||b|||ω . hk‖α‖`2‖β‖`2
by Lemma 6. This concludes the proof. �

5. Inverse stiffness matrices and averaging

This section proves that the inverse of the stiffness matrix Sδ(ω) (w.r.t. the co-
efficient adapted bases Bδ(ω)) defined in the previous section can be efficiently ap-
proximated by a sparse matrix. One possibility to compute an approximate inverse of
the matrix Sδ(ω) is to apply the conjugate gradient method (CG) to the matrix with
unit vectors ei ∈ RN as right-hand sides. The sparsity structure from Lemma 5 shows
that one matrix-vector product with Sδei increases the number of non-zero entries to
#
{

1 ≤ j ≤ N : d(i, j) . 1 + | log(δ)|
}
. Thus, after k ∈ N iterations of the CG

method, the resulting vector has about #
{

1 ≤ j ≤ N : d(i, j) . k(1 + | log(δ)|)
}
non-

zero entries. Since the condition number κ(Sδ) is uniformly bounded, the number of
iterations grows only logarithmically in the desired accuracy. Thus, the cost of k ∈ N
iterations of the CG method can be bounded roughly by (1 + | log(δ)|))2.

Lemma 8. Given δ > 0, there exists a matrixRδ(ω) such that ‖S(ω)−1−Rδ(ω)‖2 ≤ δ.
Moreover, Rδ(ω) satisfies

d(i, j) > Cinvζ(| log(δ)|2 + 1) or lev(i) 6= lev(j) =⇒ Rδ
ij(ω) = 0, (5.1)

for some uniform constant Cinv > 0 and ζ from Lemma 5. The number of non zero
entries is bounded by nnz(Rδ) . N(1 + | log(δ)|)d.

Proof. Due to Lemma 5 and the fact that B(ω) is a Riesz basis (Lemma 6), we observe
that all eigenvalues of Sδ(ω) are of order O(1) as long as δ . 1. Therefore, we can
obtain Rδ(ω) by application of CG steps to S δ̃(ω) (we chose δ̃ > 0 later, see, e.g., [33,
Chapter 6]). The convergence properties of CG show

‖S δ̃(ω)−1 −Rδ(ω)‖2 ≤ δ

if we perform k = O(| log(δ)|+ 1) CG-steps. This follows since

‖resk‖`2 '
√
S δ̃(ω)resk · resk

for the residual resk of the CG method. From Lemma 5, we see that Rδ(ω) satisfies

d(i, j) > ζ(| log(δ)|+ 1)2 or lev(i) 6= lev(j) =⇒ Rδ
ij(ω) = 0,

since each CG-step increases the bandwidth by the original bandwidth. With Lemma 5,
we conclude the proof by choosing k ' 1 + | log(δ)| and δ̃ ' δ. �
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Lemma 9. We define a discrete approximation to A−1 by

R := E
[(
T−T (ω)S(ω)T−1(ω)

)−1]
= E

[
T (ω)S(ω)−1T (ω)T

]
.

We define a perturbed and truncated version of R by Rδ ∈ RN×N

(Rδ)(`,k) :=


(
E
[
T δ(ω)Rδ(ω)T δ(ω)T

])
(`,k)

`+ k ≤ | log(δ)|,

0 else.
(5.2)

which satisfies ‖R − Rδ‖2 ≤ CL2δ. The number of non-zero entries in Rδ is bounded
by nnz(Rδ) . L/δd.

Proof. We define the auxiliary operator

R̃δ := E
[
T δ(ω)Rδ(ω)T δ(ω)T

]
.

Following the proofs of Lemma 5, Lemma 7, and Lemma 8, we show

‖(R− R̃δ)x‖2
`2
.

L∑
`=1

∥∥∥∥ L∑
k=1

(R(`,k) − R̃δ
(`,k))x(k)

∥∥∥∥2

`2

. δ2L4

L∑
`=1

L∑
k=1

‖x(k)‖2
`2

= δ2L4‖x‖2
`2

and hence ‖R− R̃δ‖2 . δL2. The estimate (4.2) implies for `+ k > | log(δ)|

‖(R̃δ −Rδ)(`,k)‖2 ≤
L∑
j=0

‖T δ(ω)(`,j)‖2‖Rδ(ω)(j,j)‖2‖(T δ(ω)(k,j))‖2

.
L∑
j=0

h`(1 + δ)hk

. L2−`−k.

This implies for x ∈ RN

‖(R̃δ −Rδ)x‖2
`2
≤

L∑
i,j=0

‖(R̃δ −Rδ)(i,j)x|(j)‖2
`2
.

L∑
j=0

‖x|(j)‖2
`2

L∑
i=| log(δ)|−j

L2−i−j

. Lδ‖x‖2
`2
.

The number of non-zero entries in Rδ can be bounded by∑
0≤i+j≤| log(δ)|

#(Rδ)(i,j) ≤
∑

0≤i+j≤| log(δ)|

2d(i+j) . Lδ−d.

This concludes the proof. �

To formulate the following main theorem, we identify the matrix Rδ with an op-
erator Rδ : L2(D) → L2(D) via the natural embedding ι : RN → span(H), ι(α) =∑N

i=1 αiφi ∈ L2(D). There holds Rδ := ιRδι?.

Theorem 10. Given an accuracy δ > 0, there exists a finite dimensional operator
Rδ : L2(D)→ L2(D) which depends only on δ such that

‖A−1 −Rδ‖L(L2(D),L2(D)) ≤ δ.

The corresponding operator matrix Rδ has at most O(| log(δ)|2d+1δ−d) non-zero entries.
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Constructive proof. We use the operator matrix Rδ ∈ RN×N from Theorem 9. Given
f ∈ L2(D), define F (ω) ∈ RN by F i(ω) := (f, bi/|||bi|||ω). By definition, there
holds S(ω)α(ω) = F (ω) with uL(ω) :=

∑N
i=1αi(ω)bi/|||bi|||ω ∈ span(B(ω)) being

the Galerkin approximation to u(ω) ∈ H1
0 (Ω). Hence, we have

‖u(ω)− ΠLuL(ω)‖L2(D) ≤ ‖(1− ΠL)u(ω)‖L2(D) + ‖u(ω)− uL(ω)‖L2(D).

Since ΠL(u(ω)− uL(ω)) = 0, we have that

|||u(ω)− uL(ω)|||ω . hL‖(1− ΠL)f‖L2(D) ≤ hL‖f‖L2(D).

Therefore, we obtain

‖u(ω)− ΠLuL(ω)‖L2(D) . hL‖f‖L2(D).

With the transfer matrices T (ω) from Lemma 7, we obtain

F̃ := ι?f = T−T (ω)F (ω)

and hence β ∈ RN with T−T (ω)S(ω)T−1(ω)β(ω) = F̃ satisfies T (ω)α(ω) = β(ω).
Together with Lemma 7, this shows that ΠLuL(ω) =

∑N
i=1 βi(ω)φi/‖φi‖L2(D). The

approximate solution Rδf =
∑N

i=1 γiφi/‖φi‖L2(D) with γ := RδF̃ satisfies

|γ − E[β]| . L2δ‖f‖L2(D),

by use of Theorem 9 and since EM [β] = RF̃ . Since H is an orthogonal basis, we obtain
immediately ‖Rδf −Rf‖L2(D) . L2δ‖f‖L2(D), where

Rδf = E[uL].

Combining the above error bounds, we conclude

‖E[u]−Rδf‖L2(D) . (L2δ + hL)‖f‖L2(D).

With L ' | log δ| and hL ' δ there holds ‖E[u]−Rδf‖L2(D) . (1+ | log(δ)|2)δ‖f‖L2(D).
Replacing δ with δ/L2, we conclude the proof. �

6. Sparse operator compression

Theorem 10 shows that the expected operator can indeed be compressed to a sparse
matrix. The constructive proof motivates a compression algorithm by simply replacing
the expectation by a suitable sample mean. For this purpose, let ΩM ⊂ Ω be a finite
set of sampling points with |ΩM | = M ∈ N and define the sample mean EM [X] :=
M−1

∑
ω∈ΩM

X(ω) for a random field X. It is readily seen that Lemma 9 remains valid
when E is replaced by EM . More precisely, define

RM := EM
[(
T−T (ω)S(ω)T−1(ω)

)−1]
= EM

[
T (ω)S(ω)−1T (ω)T

]
and a perturbed and truncated version of RM by Rδ

M ∈ RN×N

(Rδ
M)(`,k) :=


(
EM
[
T δ(ω)Rδ(ω)T δ(ω)T

])
(`,k)

`+ k ≤ | log(δ)|,

0 else.
(6.1)

Then
‖RM −Rδ

M‖2 ≤ CL2δ (6.2)
and the number of non-zero entries in Rδ

M is bounded by O(L/δd).
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Remark 11. The truncation condition ` + k ≤ | log(δ)| in (6.1) can be relaxed to
`+ k ≤ C| log(δ)| for some C ' 1 without any harm. In practice, when L ' | log δ| is
chosen, a natural choice would be `+k ≤ L. In the numerical experiment of Section 7
we will see that sometimes it can be advantageous to include also few more blocks of
the lower right part of the matrix (see Eq. (7.1)).

The analog of Theorem (10) in this discrete stochastic setting then reads.

Corollary 12. Given an accuracy δ > 0 and a set of M samples ΩM ⊂ Ω, M ∈ N,
there exists a finite dimensional operator Rδ

M : L2(D)→ L2(D) which depends only on
the sample coefficients A(ω), ω ∈ ΩM , δ, and D, such that

‖A−1 −Rδ
M‖L(L2(D),L2(D)) ≤ δ + ‖(E− EM)[A−1]‖L(L2(D),L2(D)).

The corresponding operator matrix Rδ
M has O(| log(δ)|2d+1δ−d) non-zero entries.

When using a plain Monte Carlo sampling the mean squared sampling error scales
like M−1 meaning that M ' δ−2 samples suffice to ensure that the sampling error
is not dominating the error bound. This is optimal in the present setting with no
assumptions on the distribution of the random diffusion coefficient. More advanced
sampling techniques such as quasi Monte Carlo methods are certainly possible under
additional assumptions such as a rapid decay of eigenvalues of a given Karhunen-Loève
expansion of the random parameter (see [6] for a discussion in terms of PDEs with
random parameters). Even more promising is in the intertwining of the hierarchi-
cal decomposition and the sampling procedure in the spirit of multilevel/multi-index
Monte Carlo (see, e.g., [14, 17] for the seminal works as well as [5]). At least in the
regime where stochastic homogenization applies, the computation of basis functions
is likely to be essentially independent of the parameter ω for levels that are much
coarser than the characteristic length scale of random oscillation (or correlation) [13].
The increasing variance for the levels approaching the scale of correlation, stationarity
could be exploited to improve the overall complexity.

Another interesting case is the use of log-normal coefficients A(ω) = exp(Z(ω)) for
a normal random field Z. As shown in [10], such random fields can be efficiently gen-
erated for general covariance functions and non-uniform grids. The present analysis,
however, breaks down since the assumption of bounded contrast in (2) is violated. The
authors are confident, however, that the arguments can be modified in the sense that
the extreme contrast samples will only appear with very low probability (the tails of
the Gaussian density). Thus, a polynomial dependence on the contrast (as is observed
for the present construction) will not perturb the final result.

We shall finally mention that so far the construction relies on the exact solution of
the (infinite-dimensional) corrector problems (3.8) and their preconditioned variant,
respectively. The elegant way to transfer all results to a fully discrete setting is to
consider space-discrete problem from the very beginning. It is readily seen that all
constructions and results remain valid if we replace the space V = H1

0 (D) by a suitable
finite dimensional subspace Vh ⊂ V throughout the paper. We have in mind some
standard V -conforming finite element space Vh that is based on some regular mesh of
width h which turns the preconditioned corrector problems into finite element problems
on the mesh h restricted to local subdomains of diameter h`| log δ|. The only restriction
that comes with this discretization step is that the mesh size h limits the number of
possible levels L in the hierarchical decomposition and, hence, the possible accuracy
δ . h when the sparse approximation is compared with the reference solution E[uh]
where uh solves (2.1) with V replaced with Vh. Clearly, the overall accuracy of the
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fully discrete method depends on the error ‖E[u − uh]‖L2(D) which is a standard
finite element error that depends on the spatial regularity of A and also its possible
frequencies of oscillations. All this is well understood and implies the usual conditions
on the smallness of h so that A is properly resolved (see e.g. [32]).

7. Numerical experiment

This section presents some simple numerical experiments to illustrate the perfor-
mance of the method. We consider the domain D = [0, 1]d for d = 1, 2 and the
coefficient A is scalar i.i.d. and, on each cell of the uniform Cartesian mesh Tε, it is
uniformly distributed in the interval [γmin, γmax] = [0.5, 10]. The mesh width (scale of
oscillation/correlation length) ε = 2−8 (d = 1) and ε = 2−5 (d = 2).

The approximations of the solution operator are based on sequences of uniform
Cartesian meshes T` (` = 0, 1, 2, . . . , L) of mesh width h` = 2−` that do not necessarily
resolve ε. We compute approximations RL = Rδ

ML
of the expected solution operator

depending on the maximal level L which means that we expect errors of order δ ≈ 2−L.
The truncation of blocks is performed based on the criterion k+ ` ≤ L as indicated in
Remark 11. For the solution of the corrector problems and the reference solution uh
we use d-linear finite elements on the mesh Th where h = 2−14 (d = 1) and h = 2−9

(d = 2). To achieve accuracy of order δ (w.r.t. to the reference solution) we perform
dL/2e CG-iterations for both computing the correctors Cδ(ω) and inverting the block-
diagonal stiffness matrices Sδ(ω). For the approximation of the expected values we
use a quasi-Monte Carlo method (particularly a Sobol sequence) with appropriate
numbers of sampling points Mh := h−1 for the reference solutions and ML := 2L for
the approximations. While we did not show that the problem is smooth enough to
justify the use of quasi-Monte Carlo sampling, we still observe the expected higher
convergence rate compared to plain Monte Carlo sampling and thus save significant
compute time.

Since the computation of a reference expected operator is hardly feasible we only
compute the error for one non-smooth deterministic right-hand side f = χ[.5,1]×[0,1]d−1 ∈
L2(D)\H1(D). Figures 1-2 (left plots) depict the errors ‖EMh

[uh]−RLf‖L2(D) versus
the number of nonzero entries of nnz(RL) for L = 1, 2, . . . . The results are very well in
agreement (up to a, possibly pessimistic, logarithmic factor) with the prediction that

‖EMh
[uh]−RLf‖L2(D) .M−1

L +
| log(nnz(RL))2+1/d

nnz(RL)1/d

for d = 1, 2. This is the optimal rate of convergence (up to a logarithmic factor) given
a piecewise constant approximation.

In this setting where the expected solution E[u] is even H2(D) regular it would be
desirable to recover gradient information from the piecewise constant approximation
by suitable postprocessing e.g. in the hierarchical basis associated with a constant
coefficient. Figures 1–2 (left plots) indicate that this is not automatically achieved for
non-smooth right-hand sides with the present choice of parameters. However, when
the truncation in (6.1) is slightly relaxed in the following form

(R̃L)(`,k) :=


(
EM
[
T δ(ω)Rδ(ω)T δ(ω)T

])
(`,k)

`+ k ≤ L+ max(1, dlog2 Le),

0 else,
(7.1)
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Figure 1. Numerical results in 1d: L2(D)-errors ‖EMh
[uh]−RLf‖L2(D)

and H1(D)-errors ‖∇(EMh
[uh] − u1

L)‖L2(D) of post-processed approxi-
mation for L = 1, 2, . . . , 10. Left: Errors versus nnz(RL) using original
approach (6.1). Right: Errors versus nnz(R̃L) using modified approach
(7.1).

accurate reconstruction of gradients seems possible. From this slightly more accurate
but slightly more dense approximation R̃L we can reconstruct the coefficients of a
smooth approximation u1

L ∈ spanB(ω∆) (with ω∆ ∈ Ω such that A(ω∆) = 1) in the
hierarchical basis that corresponds to the Laplacian by simply applying T δ(ω∆)−1 to
R̃Lf . The errors of this smooth postprocessing ‖∇(EMh

[uh]−u1
L)‖L2(D) are plotted in

Figure 1–2 (right plots) against the number of non-zero entries nnz(R̃L). The observed
rate of convergence for the H1-error is nnz(R̃L)−1/d (up to a logarithmic factor) which
is nearly optimal. See also the plots on the

These first numerical results support the theoretical findings and indicate the po-
tential of the approach. Since the techniques that were used in the construction of the
method and its analysis, in particular the localized orthogonal decomposition, gener-
alize in a straight-forward way to other classes of operators such as linear elasticity
[18] or Helmholtz problems [31, 11, 4], we believe that the sparse compression algo-
rithm for the approximation of expected solution operators is applicable beyond the
prototypical model problem of this paper.
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