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We are interested in the description of small modulations in time
and space of wave-train solutions to the complex Ginzburg-Landau
equation

∂TΨ = (1 + iα)∂2
XΨ + Ψ− (1 + iβ)Ψ|Ψ|2

near the Eckhaus boundary, that is, when the wave train is near
the threshold of its first instability. Depending on the parameters
α, β a number of modulation equations can be derived, such as the
KdV equation, the Cahn-Hilliard equation, and a family of Ginzburg-
Landau based amplitude equations. Here we establish error estimates
showing that the KdV approximation makes correct predictions in a
certain parameter regime. Our proof is based on energy estimates and
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to improve linear damping we work in spaces of analytic functions.
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1 Introduction

The complex Ginzburg-Landau (GL) equation

∂TΨ = (1+ iα)∂2
XΨ+Ψ− (1+ iβ)Ψ|Ψ|2, X ∈ R, T ≥ 0,Ψ(X,T ) ∈ C, (1)

with α, β ∈ R can be derived via a multiple scaling analysis as a universal
amplitude equation for the description of pattern forming systems, such as
reaction-diffusion systems or the Couette-Taylor problem, near the threshold
of the first instability of the trivial ground state, cf. [21]. See [25, Chapter
10] for a recent survey.

The GL equation possesses a family of wave-train solutions

Ψper(X,T ) = Ψ0e
i(ζX+Ω0T ), (2)

which are periodic in time and space, with Ψ0,Ω0 ∈ R and ζ ∈ (−1, 1)
satisfying

Ψ2
0 + ζ2 = 1, Ω0 + αζ2 + βΨ2

0 = 0. (3)

As (1) is invariant under the mapping Ψ 7→ −Ψ, we assume without loss of
generality Ψ0 > 0 throughout the paper. Moreover, spatially homogeneous
wave trains lie outside the parameter regime – see §3 – considered in this
paper and so we assume ζ ∈ (−1, 1) \ {0} in the following.

The stability of these solutions was first discussed in [9]. Due to transla-
tional invariance of the family of wave trains in time and space as solutions
to (1), the spectrum of the linearization of (1) about Ψper touches the origin.
Therefore, in the most stable scenario, the spectrum is bounded away from
the imaginary axis in the left-half plane except for a tangency at the origin.
In such a case, we call the wave train spectrally stable.

It is well-known [9], that in case α = β = 0 wave trains are spectrally
stable if and only if ζ2 ≤ 1/3. In fact, for all fixed α, β ∈ R with 1 + αβ >
0, there is a critical wave number ζbd = ζbd(α, β) ∈ (0, 1) – the so-called
Eckhaus boundary – such that spectral stability holds if and only if |ζ| ≤ ζbd,
cf. [27]. We note that in case |ζ| < ζbd spectral stability yields nonlinear
stability of wave-train solutions to (1) with respect to small spatially localized
perturbations [3, 4, 13]. The same result at the Eckhaus boundary |ζ| = ζbd

for α = β = 0 has been established in [10].
It depends on the value of (α, β) ∈ R2 whether the wave train Ψper desta-

bilizes through a Hopf-Turing or sideband instability at the Eckhaus bound-
ary |ζ| = ζbd. More specifically, there are disjoint open regions As,Ah ⊂ R2
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(which can be determined explicitly [27]) satisfying As ∪ Ah = {α, β ∈ R2 :
1 + αβ ≥ 0} such that a Hopf-Turing instability occurs at |ζ| = ζbd if
(α, β) ∈ Ah and a sideband instability occurs at |ζ| = ζbd if (α, β) ∈ As –
see also Figure 1.

In [27] various amplitude equations for the description of slow modula-
tions in time and space of the wave-train solutions to (1) have been formally
derived for |ζ| close to the Eckhaus boundary ζbd. One obtains a system
consisting of a Ginzburg-Landau equation coupled to a nonlinear diffusion
equation if (α, β) ∈ Ah, a Korteweg-de Vries (KdV) equation if (α, β) ∈ As
with α 6= β and a Cahn-Hilliard equation if (α, β) ∈ As with α = β. At the
boundaries of Ah and As more complicated amplitude equations occur.

In the last decades it has been observed that the Eckhaus boundary plays
an important role in the creation of patterns, especially in the wave number
selection of the pattern, cf. [1]. Thus, for an analytic understanding of these
pattern forming processes, it is important to know which of the aforemen-
tioned amplitude equations occurring at the Eckhaus boundary are valid and
which are not.

Figure 1: The regions As and Ah in the (α, β)-plane.
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It is the purpose of this paper to establish error estimates showing that
the KdV equation

∂τA = (β − α)

(
1 + αβ

1 + β2
∂3
ξA+ ∂ξ(A

2)

)
, ξ ∈ R, τ ≥ 0, A(ξ, τ) ∈ R, (4)

makes correct predictions about the dynamics of slow modulations of the
wave-train solution Ψper to (1). Thus, we assume (α, β) ∈ As with α 6= β
and |ζ| = ζbd +O(ε2) – where 0 < ε� 1 is a small perturbation parameter
– such that for |ζ| > ζbd a small unstable branch of spectrum has entered
the right-half plane after a sideband instability – see Figure 2. In this regime
the underlying structure driving the slow modulations of the wave train in
the dissipative Ginzburg-Landau equation is conservative and governed by
the KdV equation. We exploit this conservative structure to obtain non-
trivial error estimates on an O(1/ε3)-time scale for solutions of order O(ε2).
Consequently, we do not only employ dissipative methods, but rely instead
on analytical smoothing to improve linear damping in our error estimates.
More precisely, we split the equations for the error into a linearly exponen-
tially damped part and into the rest. For estimating the rest we exploit
improved linear damping due to analytical smoothing and the fact that the
associated nonlinear term is O(k) for k → 0.

Other rigorous approximation results exist away from the Eckhaus bound-
ary. In case α = β = 0 and |ζ| < ζbd the so-called phase-diffusion equation
has been justified [20]. For (α, β) 6= (0, 0) the validity of a conservation
law [19] and, again for |ζ| < ζbd, of the Burgers equation [5] has been estab-
lished. On the other hand, at the Eckhaus boundary |ζ| = ζbd in the regime
α = β = 0, it is shown in [8] that a waiting time phenomenon occurs.

A theorem about the KdV approximation at the Eckhaus boundary has
already been stated in [5, §7.5]. However, no detailed proof was given. It
was outlined how the proof for the validity of Burgers approximation would
transfer to the KdV approximation at the Eckhaus boundary. When prepar-
ing the manuscript [11] we recognized that a complete validity proof is much
more involved and goes far beyond the sketch given in [5, §7.5]. Therefore, we
decided to give a complete proof for the validity of the KdV approximation
at the Eckhaus boundary of which this paper is the outcome.

The plan of the paper is as follows. In §2 we derive equations for modula-
tions of the wave train in a suitably chosen coordinate system. In §3 we recall
the calculations from [27] to determine the parameter regime which leads to
the region As in Figure 1 and to the derivation of the KdV equation in §4.
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§5 contains the functional analytic set-up. In §6 our approximation result is
formulated. The proof of this result is given in §7. §8 consists of concluding
remarks in which we discuss the approximation result in the original coordi-
nate system, what happens if we work in Sobolev spaces, and whether other
formally derived amplitude equations at the Eckhaus boundary are valid or
not. Technical results are provided in an appendix.

Notation. Constants which can be chosen independently of the small
perturbation parameter 0 < ε� 1 are denoted by the same symbol C.

Acknowledgement. We gratefully acknowledge financial support by
the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.

2 The equations for the modulation

We are interested in modulations of the wave-train solution (2) to the GL
equation (1). Thus, we consider the modulated solution

Ψ(X,T ) = er0+s(X,T )+i(ζX+Ω0T+φ(X,T )) = Ψper(X,T )es(X,T )+iφ(X,T ), (5)

to (1), where r0 ∈ R is defined through Ψ0 = er0 , cf. (2). The conditions (3)
for the existence of wave-train solutions now read

e2r0 + ζ2 = 1, Ω0 + αζ2 + βe2r0 = 0. (6)

In this section, we derive equations for the modulations (s, φ) in (5). Thus,
we rewrite the GL equation (1) in polar coordinates of the form Ψ = er+iϕ,
which yields

∂Tϕ = ∂2
Xϕ+ α∂2

Xr − βe2r + α(∂Xr)
2 − α(∂Xϕ)2 + 2(∂Xϕ)(∂Xr),

∂T r = ∂2
Xr − α∂2

Xϕ+ 1− e2r + (∂Xr)
2 − (∂Xϕ)2 − 2α(∂Xϕ)(∂Xr),

(7)

where we used

∂TΨ = er+iϕ(∂T r + i∂Tϕ),

∂2
XΨ = er+iϕ(∂Xr + i∂Xϕ)2 + er+iϕ(∂2

Xr + i∂2
Xϕ).

The modulated solution (5) in polar coordinates reads

r(X,T ) = r0 + s(X,T ), ϕ(X,T ) = φ(X,T ) + ζX + Ω0T.
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Substituting this solution into (7) and employing (6) yields equations for the
modulations U(X,T ) = (φ, s)(X,T ), which are given by

∂TU = L0U +N0(U), (8)

where L0 is the differential operator

L0 = D2∂
2
X − 2ζD1∂X + e2r0D0,

with

D2 =

(
1 α
−α 1

)
, D1 =

(
α −1
1 α

)
, D0 =

(
0 −2β
0 −2

)
,

and the nonlinearity N0 is given by

N0(U) =

(
α(∂Xs)

2 − βe2r0h(s)− α(∂Xφ)2 + 2∂Xφ∂Xs
(∂Xs)

2 − e2r0h(s)− (∂Xφ)2 − 2α∂Xφ∂Xs

)
,

with h(s) := e2s − 1 − 2s. Following [27], it is advantageous to switch to a
co-moving frame and to rescale both time and space. Therefore, we introduce

σ =
e2r0

ζ2
= ζ−2 − 1, t = ζ2T, x = ζ(X − cζT ), (9)

where we recall that |ζ| ∈ (0, 1). With respect to these coordinates, sys-
tem (8) reads

∂tU = LU +N (U), (10)

where L denotes the differential operator

L = D2∂
2
x + (cI − 2D1)∂x + σD0,

and the nonlinearity N is given by

N (U) =

(
α(∂xs)

2 − σβh(s)− α(∂xφ)2 + 2∂xφ∂xs
(∂xs)

2 − σh(s)− (∂xφ)2 − 2α∂xφ∂xs

)
.

The modulation equation (10) only depend on x- and t-derivatives of φ and
not on φ itself. This yields translational invariance of the wave train Ψper, i.e.,
any translate Ψper(X+X0, T+T0) = Ψper(X,T )ei(ζX0+Ω0T0), with X0, T0 ∈ R,
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of the wave-train solution in space and/or time is again a solution to (1).
Consequently, the modulation equation (10) admits constant solutions (0, φ0)
with φ0 ∈ R. To account for translational invariance, it is beneficial to
introduce the local wave number ψ = ∂xφ of the modulated wave train.
Then (10) transforms into

∂tV = LV +N(V ), (11)

where V (x, t) = (ψ, s)(x, t), where L denotes the differential operator

L =

(
∂2
x + (c− 2α)∂x α∂3

x + 2∂2
x − 2σβ∂x

−α∂x − 2 ∂2
x + (c− 2α)∂x − 2σ

)
,

and the nonlinearity N is given by

N(V ) =

(
∂x (α(∂xs)

2 − σβh(s)− αψ2 + 2ψ∂xs)
(∂xs)

2 − σh(s)− ψ2 − 2αψ∂xs

)
. (12)

Due to the introduction of the local wave number ψ = ∂xφ, we obtain a
derivative ∂x in front of the first component of the nonlinearity N . Hence,
we gain that the first component of the nonlinearity vanishes like O(k) in
Fourier space at the wave number k = 0. On the other hand, the introduction
of ψ yields a third derivative in the off-diagonal entry of the linearity L.
This complicates establishing regularity and damping properties of L in L2-
type spaces, which is required for our analysis in §7. Therefore, we replace
in §7 the derivative ∂xφ in (10) by a local derivative ϑ(φ) instead, which is

defined through its action in Fourier space. It holds ϑ(φ) = F−1[ϑ̂F(φ)] with

ϑ̂(k) = ikmin{1, |k|−1}, where F is the Fourier transform, cf. Figure 4.

3 Determining the parameter regime

The aim of this paper is to prove that the KdV equation makes correct pre-
dictions about the behavior of modulations of marginally sideband-unstable
wave-train solutions Ψper to (1). In this section, we establish a parameter
regime that leads to the desired spectral configuration.

The linearization of (1) about the wave-train solution Ψper in (x, t)-
coordinates (9) corresponds to the linearity L in the modulation equation (10).
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The spectrum of the operator L on L2(R) is given by the eigenvalues of its
Fourier symbol

L̂(k) =

(
−k2 + (c− 2α)ik −αk2 − 2βσ + 2ik

αk2 − 2ik −k2 − 2σ + (c− 2α)ik

)
.

Equating det(L̂(k)− λI) = 0 gives

θ(θ − 2σ) + σ2γ(k)(γ(k) + 2β) = 0,

where θ = −λ − k2 + (c − 2α)ik and γ(k) = (αk2 − 2ik)/σ. Solving this
quadratic equation in θ yields two solutions

θ± = σ ±
√
σ2 − σ2γ(k)(γ(k) + 2β) = σ ± συ(k),

where the quantity υ(k) is defined as the principal square root

v(k) =
√

1− γ(k)2 − 2βγ(k).

Consequently, the eigenvalues of L̂(k) are

λ±(k)= i(c− 2α)k − k2 − σ ± συ(k)

= i(c− 2α)k − k2 − σ ±
√
σ2 − (αk2 − 2ik + 2βσ) (αk2 − 2ik).

(13)

Thus, the spectrum of L is given by the union λ+[R] ∪ λ−[R]. The curve
λ−[R] lies in the open left-half plane. On the other hand, λ+[R] touches the
origin at k = 0 implying 0 is in the spectrum of L, which is related to the
translational invariance of the wave train Ψper in space and time as a solution
to (1). We expand λ+ about the origin as

λ+(k) = c1ik − c2k
2 + c3ik

3 − c4k
4 +O(|k|5), (14)

with

c1 = c− 2(α− β),

c2 = 1 + αβ − 2(1 + β2)σ−1,

c3 = 2(1 + β2)(ασ − 2β)σ−2,

c4 = (1 + β2)(α2σ2/2− 6αβσ + 2(1 + 5β2))σ−3.

The coefficient c1 is the group velocity of the wave train, which corresponds
to the speed at which the envelope of the wave train propagates through
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space. By choosing an appropriate co-moving frame, i.e. by taking c =
2(α − β) in (9), we can factor out this transport. It depends on the sign of
the diffusivity coefficient c2 whether the curve λ+[R] touches the origin as a
left- or right-oriented parabola. Thus, the sign of c2 determines the stability
of the spectrum close to the origin. For all (α, β) ∈ R2 satisfying 1 +αβ < 0
it holds c2 < 0, implying the wave train is spectrally unstable. On the other
hand, for (α, β) ∈ R2 with 1 + αβ > 0 we have c2 > 0 if and only if

σ > σs :=
2 (1 + β2)

1 + αβ
,

or equivalently, using (9),

ζ2 < ζ2
s , ζs :=

√
1 + αβ

(2 (1 + β2) + 1 + αβ)
.

Hence, as |ζ| is increased through ζs the wave-train solution Ψper undergoes
a sideband instability. Although such a sideband instability occurs for all
(α, β) ∈ R2 with 1 + αβ > 0, the wave train is only destabilized through the
sideband instability if and only if (α, β) is contained in some set As, which
is explicitly determined in [27]. There, one defines the function r : (0, 1) →
R ∪ {∞} by r(z) = z−1/2 for z ∈ (0, 1/3], by r(z) = ∞ for z ∈ [3/4, 1) and
by the unique positive real root r(z) to the algebraic equation

r4z2(4z − 3) + r2(5z2 − 4z + 1) + 1 = 0,

for z ∈ (1/3, 3/4). Subsequently, one obtains

As =
{

(α, β) ∈ R2 :
(
−1 < αβ < β2

)
∨ (β = 0 ∧ α 6= 0)

∨
(
0 < |β| ≤ |α| < r

(
β
α

))}
,

see also Figure 1. Thus, for any (α, β) ∈ As the wave train destabilizes
through a sideband instability as |ζ| is increased through ζs, which implies
that for such (α, β) the Eckhaus boundary is given by ζbd = ζs. At the
Eckhaus boundary |ζ| = ζbd, or equivalently at σ = σs, the expression for c3

simplifies to

c3,s = 2 (α− β)σ−1
s . (15)
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So, if (α, β) ∈ As with α 6= β, we expect that the leading-order behavior
of ∂t − L is dispersive near the Eckhaus boundary |ζ| = ζbd, which, in the
appropriate co-moving frame, will lead to a KdV equation as an amplitude
equation for modulations of Ψper solving (10) – see [27] and §4. On the other
hand, in the special case α = β, c3,s vanishes and a Cahn-Hilliard equation
occurs instead – see again [27].

We are interested in proving the validity of the KdV equation as a mod-
ulation equation for marginally sideband unstable wave trains such that a
small branch of unstable spectrum attached to the origin lies the right-half
plane – see Figure 2 and Remark 3.1.

O(ε) k

Re(λ+)

O(ε4)

Figure 2: The spectral curve λ+ in the parameter regime (16).

Therefore, we set

(α, β) ∈ As, with α 6= β, σ = σs − ε2 =
2 (1 + β2)

1 + αβ
− ε2, (16)

where 0 < ε� 1 is a small parameter. Recalling σ = ζ−2 − 1 by (9), |ζ| lies
just above the Eckhaus boundary ζbd in the parameter regime (16), i.e., it
holds 0 < |ζ| − ζbd = O(ε2).

Remark 3.1. For notational simplicity we restrict ourselves to the marginally
sideband-unstable case 0 < |ζ| − ζbd. One readily observes that our analysis
works in the marginally sideband-stable case 0 ≥ |ζ| − ζbd = O(ε2), too.

By (15) and (16) we have

c3 = c3,s +O(ε2) 6= 0,
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yielding the desired dispersive dynamics on the linear level. Finally, the pa-
rameter regime (16) leads to the following spectral bounds – see also Figure 3.

Lemma 3.2. Assume (16) is satisfied. There exists an ε-independent con-
stant C > 0 such that the spectral curves λ± : R→ C given by (13) enjoy the
following bounds

Re(λ−(k)) ≤ −σs
2
− k2, Re(λ+(k)) ≤ Cε3|k|, k ∈ R,

provided ε > 0 is sufficiently small.

Proof. Since υ(k) is a principal square root, it has positive real part. Hence,
the bound on λ− follows immediately from (13) and (16). The function
f(k, σ) = Re(λ+(k;σ)) depends smoothly on k and σ at (k, σ) = (0, σs) and
by (14) and (15) it holds

∂2
kf(0, σs) = 0, ∂jkf(0, σ) = 0, j = 0, 1, 3,

c4,s := −∂4
kf(0, σs) =

(1 + αβ)J(α, β)

4(1 + β2)2
> 0,

J(α, β) = 1 + 5β2 + α2(1− 3β2) + 4αβ(β2 − 1),

for all σ > 0, where we use that 1 + αβ > 0 and J(α, β) > 0 for (α, β) ∈ As.
Thus, by Taylor’s Theorem there exists a constant C > 0 such that∣∣∂2

kf(0, σ)
∣∣ , ∣∣∂4

kf(0, σ) + c4,s

∣∣ ≤ Cε2,

for ε > 0 sufficiently small. On the other hand, we find – again by Taylor’s
Theorem – an ε-independent neighborhood U ⊂ R of 0 such that∣∣∣∣f(k, σ)− 1

2
∂2
kf(0, σ)k2 − 1

4!
∂4
kf(0, σ)k4

∣∣∣∣ ≤ c4,sk
4

2 · 4!
, k ∈ U,

as long as ε > 0 remains bounded. Combining the latter two inequalities
yields

f(k, σ) ≤ −c4,sk
4

4 · 4!
+ 2Cε2k2 ≤ 32C

√
C

3
√
c4,s

ε3|k|, k ∈ U, (17)

for ε > 0 sufficiently small, where we used that for any a, b > 0, the lines
k 7→ ±2b

√
bk/(3

√
3a) are tangent to the quartic k 7→ −ak4 + bk2 at k =

11



±
√
b/(3a). On the other hand, since we have (α, β) ∈ As, the wave train

undergoes a sideband instability at σ = σs, i.e., f(k;σs) is strictly negative
for all k ∈ R\{0} and touches the origin at k = 0 in a quartic tangency. Thus,
since U is an ε-independent neighborhood of the origin, we have f(k, σ) < 0
for k ∈ R \ U , provided ε > 0 is sufficiently small. Combining the latter
with (17) yields the result.

O(ε3)|k|

Re(λ+)

−σs
2
− k2

Re(λ−)

k

Figure 3: Spectral estimates established in Lemma 3.2.

4 Derivation of the KdV equation

In this section, we formally show that the KdV equation describes the leading-
order behavior of modulations of the wave-train solution (5) in the param-
eter regime (16). The KdV equation is a long-wave approximation, i.e., in
Fourier space the solutions are localized about k = 0. Thus, we assume (16)
and make the ansatz that small solutions (ψ∗,ε, s∗,ε)(x, t) to the modulation
equation (11) have the form

ψ∗,ε(x, t) = ε2A(εx, ε3t), s∗,ε(x, t) = ε2B(εx, ε3t), (18)

with small parameter 0 < ε � 1. We expect that B is slaved by A and so
we refine the ansatz to

B(ξ, τ) = ν0A(ξ, τ) + εν1∂ξA(ξ, τ) + ε2ν2∂
2
ξA(ξ, τ) + ε2ν3(A(ξ, τ))2, (19)
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with coefficients ν0,1,2,3 ∈ R, which will be determined later. Our goal is to
formally derive that A satisfies a KdV equation.

Inserting the ansatz (18) into (11) leads to the system

−ε3c∂ξA+ ε5∂τA = ε4∂2
ξA+ ε5α∂3

ξB − βσ∂ξ((2ε3B + 2ε5B2 +O(ε7))

+ αε7∂ξ((∂ξB)2)− 2ε3α∂ξA− ε5α∂ξ(A
2)

+ 2ε4∂2
ξB + 2ε6∂ξ(A(∂ξB)), (20)

−ε3c∂ξB + ε5∂τB = ε4∂2
ξB − ε3α∂ξA− σ(2ε2B + 2ε4B2 +O(ε6))

+ ε6(∂ξB)2 − 2ε2A− ε4A2 − 2ε3α∂ξB − 2ε5αA(∂ξB).

Equating terms at order ε2, ε3 and ε4 in the B-equation in (20) to zero,
while assuming for the moment that σ is independent of ε, yields

−2σν0 − 2 = 0,

−2σν1 + cν0 − α− 2αν0 = 0,

−2σν2 + ν0 + cν1 − 2αν1 = 0,

−2σν3 − 2σν2
0 − 1 = 0.

(21)

Similarly, equating terms at order ε3, ε4 and ε5 in the A-equation in (20) to
zero leads to

c− 2βσν0 − 2α = 0, (22)

1 + 2ν0 − 2βσν1 = 0, (23)

and to the KdV equation

∂τA = γ̃lin∂
3
ξA+ γ̃non∂ξ(A

2), (24)

with coefficients

γ̃lin := αν0 − 2βσν2 + 2ν1,

γ̃non := −(2βσν2
0 + α + 2βσν3).

Our aim is to express these coefficients in terms of α, β and σ by solving (21)
with respect to ν0, . . . , ν3. First, we choose the co-moving frame in (9) such
that (22) is satisfied, i.e., we take the velocity

c = 2βσν0 + 2α. (25)
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With this choice of c, system (21) uniquely determines the coefficients ν0, . . . , ν3.
Indeed, we find

ν0 = −σ−1,

2σν1 = 2βσ−1 − α,
2σν2 = −σ−1 − 2βν1,

2σν3 = −2σ−1 − 1.

(26)

Substituting ν0 = −σ−1 into (25), we recover the group velocity

c = 2(α− β), (27)

of the critical wave number k = 0, meaning we have switched to a co-moving
frame in which the envelope of the wave train does not propagate – see §3.
Finally, by our choice σ = σs−ε2 in (16), equation (23) is satisfied to leading
order. Indeed, we find

1 + 2ν0 − 2βσν1 = 1− 2σ−1
s − 2β2σ−1

s + αβ +O(ε2) = O(ε2).

Using (16) and (26), we approximate the coefficient γ̃lin of the linear term in
the KdV equation (24) by

γ̃lin = αν0 − 2βσν2 + 2ν1

= (β − α)σ−1 + 2
(
β2 + 1

)
ν1

= 2(β − α)σ−1
s +O(ε2)

= γlin +O(ε2) 6= 0,

where γlin := −c3,s = (β − α)(1 + αβ)/(1 + β2) is the leading-order c3-
coefficient in the expansion (14) at the Eckhaus boundary – see (15). Simi-
larly, we approximate the coefficient γ̃non in the KdV equation (24)

γ̃non = −(2βσν2
0 + α + 2βσν3) = γnon +O(ε2) 6= 0,

where γnon := β − α. We conclude that with the choice of coefficients (26)
and velocity (27) the equations (21) are satisfied and the equations (22)
and (23) are satisfied to leading order with O(ε2) residual. Thus, taking A
as a solution to the KdV equation (4), we find that the ansatz in (18)-(19)
formally solves the modulation equation (11) at least up to order O(ε4). In
order to prove that the KdV equation (4) makes correct predictions about
the dynamics of (1) this has to be improved subsequently in §7.4 by adding
higher order terms to the approximation. However, the construction of the
improved approximation will be made in a more adequate coordinate system.
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5 The functional analytic set-up

In order to state our main result we introduce a number of function spaces
and notations. By 〈·, ·〉 we denote the Euclidean inner product and by | · |
the associated Euclidean norm in Rd. The Fourier transform is denoted by

F(u)(k) = û(k) =
1√
2π

∫
R
e−ikxu(x)dx.

For m ≥ 0 we define the Sobolev spaces

Hm = {u ∈ L2(R) : (1 + | · |2)
m
2 û ∈ L2(R)},

endowed with the inner product

〈u, v〉Hm = 〈û, v̂〉L2
m

=

∫
R

(
1 + |k|2

)m 〈û(k), v̂(k)〉 dk.

For any m ∈ N, the induced norm is equivalent to the usual Hm-norm.
Finally, for m ≥ 0 we introduce

Wm :=

{
u : u = F−1(û), û ∈ L1(R), ‖u‖Wm =

∫
R
(1 + |k|m)|û(k)| dk <∞

}
.

By Sobolev’s embedding theorem the space Hm+δ(R) is continuously em-
bedded into Wm for each δ > 1/2. Moreover, every u ∈ Wm is bmc-times

continuously differentiable with finite C
bmc
b (R)-norm.

In the parameter regime (16), the wave train is marginally sideband-
unstable, see Figure 2, leading to positive growth rates of the semigroup
associated to the linearization. To account for these growth rates, we work
in the space

H∞µ,s = {u ∈ L2(R) : eµ|·|(1 + | · |2)
s
2 û ∈ L2(R)},

endowed with the norm

‖u‖H∞µ,s =

(∫
R
|û(k)|22e2µ|k|(1 + |k|2)sdk

) 1
2

,

where µ ≥ 0 and s ≥ 0. Functions u ∈ H∞µ,0 can be extended to functions
that are analytic on the strip {z ∈ C : |Im(z)| < µ}. In the following we use
the abbreviation H∞µ = H∞µ,0. It is readily seen that for any µ1 > µ2 ≥ 0 and
any m ≥ 0 we have the continuous embedding H∞µ1,0 ⊂ H∞µ2,m.

Similarly, we define the spaces Wµ,m.
In our notations of the spaces and norms we do not distinguish between

scalar and vector-valued functions.
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6 Main results

In §4 we formally derived a KdV approximation for small long-wave mod-
ulations of wave-train solutions to the GL equation (1) in the parameter
regime (16). In this section, we state rigorous approximation results showing
that the KdV equation makes indeed correct predictions about the dynamics
of the modulated wave train on a non-trivial time scale.

In order to state our main approximation results, we assume (16) and
switch to a comoving frame (9), where the velocity c is given by (27). We
consider an L2-solution A to the KdV equation (4), which is analytic on a
strip in the complex plane. We emphasize that such solutions exist locally
in time, see Theorem 7.7. The associated long-wave solution (18)-(19) with
coefficients (26) provides a non-trivial approximation of an O(ε2)-solution to
the modulation equation (11) on the long O(1/ε3)-time-scale.

Theorem 6.1. Let m,µA, τ0 > 0 and A ∈ C([0, τ0], H∞µA) be a solution to the
KdV equation (4). Then there exists C, τ1, ε0 > 0 such that for all ε ∈ (0, ε0)
a solution V (x, t) = (ψ, s)(x, t) to the modulation equation (11) exists with

sup
0≤ε3t≤τ1

∥∥V (·, t)− V ∗,εapp(·, t)
∥∥
Hm ≤ Cε5/2,

where V ∗,εapp(x, t) = (ψ∗,εapp, s
∗,ε
app)(x, t) is defined by (18)-(19) and (26). In par-

ticular, it holds

sup
0≤ε3t≤τ1

sup
x∈R
|V (x, t)− V ∗,εapp(x, t)| ≤ Cε3.

The error bound in Theorem 6.1 can be improved by adding higher-order
terms to the approximation ansatz (18) – see §7.4. This leads to the following
statement.

Theorem 6.2. Let m,µA, τ0 > 0, κ > 3, and A ∈ C([0, τ0], H∞µA) be a
solution to the KdV equation (4). Then there exists C, τ1, ε0 > 0 such that
for all ε ∈ (0, ε0) there exists an approximation V κ,ε

app : R × [0, τ1/ε
3] → R2

satisfying

sup
0≤ε3t≤τ1

‖V κ,ε
app(·, t)− V ∗,εapp(·, t)‖Hm ≤ Cε5/2, (28)

where V ∗,εapp(x, t) = (ψ∗,εapp, s
∗,ε
app)(x, t) is defined by (18)-(19) and (26) and there

is a solution V (x, t) = (ψ, s)(x, t) to the modulation equation (11) satisfying

sup
0≤ε3t≤τ1

∥∥V (·, t)− V κ,ε
app(·, t)

∥∥
Hm ≤ Cεκ. (29)
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Corollary 6.3. Under the assumptions of Theorem 6.2 it holds

sup
0≤ε3t≤τ1

sup
x∈R
|V (x, t)− V κ,ε

app(x, t)| ≤ Cεκ, (30)

sup
0≤ε3t≤τ1

sup
x∈R
|V κ,ε
app(x, t)− V ∗,εapp(x, t)| ≤ Cε3. (31)

Proof. The L∞-bound (30) follows from (29), since Hm is continuously
embedded into L∞(R) for m > 1/2. The bound (31) follows by construction
of the improved approximation ansatz in §7.4-§7.5 and the calculations in
Remark 7.6, noting that for 0 ≤ τ ≤ τ1 the difference V κ,ε

app(·/ε, τ/ε3) −
V ∗,εapp(·/ε, τ/ε3) is of order O(ε3) in L∞(R) for some µA > 0 – see Theorem 7.8
– and the L∞-norm is invariant under rescaling.

Since Theorem 6.1 is a direct consequence of Theorem 6.2 and Corol-
lary 6.3, it remains to prove Theorem 6.2 – see §7.

Remark 6.4. Our approximation result is not optimal in the sense that
in general τ1 < τ0. However, we still obtain the natural and non-trivial
O(1/ε3)-time scale for the approximation time.

Remark 6.5. Above approximation results should not be taken for granted.
There are counterexamples that formally derived amplitude equations make
wrong predictions, cf. [23] and §8.4.

Remark 6.6. To construct the improved KdV approximation V κ,ε
app from the

original KdV approximation V ∗,εapp, we have to solve, additional to the KdV
equation, a number of inhomogeneous linearized KdV equations, cf. §7.4.
Besides in the proof of Theorem 6.1 and Theorem 6.2 the improved approx-
imation V κ,ε

app is utilized to transfer the approximation of solutions to the
modulation equation (11) in Theorem 6.2 to the original modulated solu-
tion (5) to the complex Ginzburg-Landau equation. This is discussed in
detail in §8.1.

7 Proof of Theorem 6.2

Without loss of generality we assume m ≥ 2. The result for smaller m-values
is an immediate consequence. The bound (28) follows by construction of the
improved approximation ansatz in §7.4-§7.5. The error bound (29) will be
proven in §7.6-§7.7. Before we do so, we outline below some more details,
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especially we motivate the change of variables made in §7.2. A reformulation
of Theorem 6.2 in the new variables can be found in §7.3 and the transfer of
the result back to the original variables in §7.8.

7.1 Outline

As already said, it is a non-trivial task to bound solutions V = (ψ, s) to the
modulation equation (11) of order O(ε2) on the long O(1/ε3)-time interval
or, equivalently, to estimate the error RV defined by

V = V κ,ε
app + εκRV

in Hm by an ε-independent bound on the long O(1/ε3)-time scale.
Our approach to tackle this problem is to establish an ε-independent

constant C > 0 and a differential inequality of the form

E ′(t) ≤ Cε3(E(t) + 1), (32)

for a suitably chosen energy E(t), which allows to estimate ‖RV (t)‖Hm . Ap-
plying Grönwall’s inequality to (32) leads then to the desired Hm-bound on
RV (t) on an O(1/ε3)-time scale. We outline below that one has to overcome
a number of problems.

Since V solves (11), the error RV satisfies

∂tRV = LRV +G(V κ,ε
app , RV )− ε−κResV (V κ,ε

app), (33)

where G contains linear and nonlinear terms with respect to RV and is given
by

G(V κ,ε
app , RV ) = ε−κ

(
N(εκRV + V κ,ε

app)−N(V κ,ε
app)
)
,

and where the residual ResV (V ) is defined by

ResV (V ) = ∂tV − LV −N(V ). (34)

Thus, in order to obtain a differential inequality of the form (32), we
require an O(ε3+κ)-bound on the residual. The nonlinear terms with respect
to RV in G are of order O(εκ), so that we require κ > 3. The major difficulty
comes from the linear terms with respect to RV in G. Because the KdV
approximation V κ,ε

app is of order O(ε2), these linear terms are proportional to
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O(ε2). In order to extract the properties of our system, which nevertheless
allows to establish an inequality of the form (32) for a suitable chosen energy,
we have to perform additional changes of variables.

To gain the same regularity in both components of RV , we first modify the
local wave number ψ = ∂xφ, which was introduced in §2. We replace ψ = ∂xφ
in (11) by χ = ϑ(φ), which is defined through its Fourier symbol ϑ̂ : R→ R
given by ϑ̂(k) = ikmin{1, |k|−1} and is called local pseudo-derivative in the
following – see Figure 4. After applying this transform, the linearity L in
the error equation (33) is replaced by a linearity that has the same spectrum
as the linear operator L in system (10). Thus, by the calculations in §3, it
has unstable spectrum close to the origin in the parameter regime (16) – see
also Figure 2 – but also an exponentially damped part. This exponentially
damped part allows us to control O(ε2)-terms in G on the long O(1/ε3)-time
scale. The weakly unstable part is of no help in this respect: one has to
use that the corresponding part in G has a local pseudo-derivative in front
– see also (12). In order to exploit this fact we introduce a time-dependent
exponential weight, which damps at all wave numbers of the weakly unsta-
ble part except for the wave number k = 0. This is sufficient to control
the corresponding O(ε2)-terms in G that have a pseudo-derivative in front,
since they vanish at k = 0. Such time-dependent exponential weights are
also employed in the functional analytic versions of the Cauchy-Kowalevski
theorem, cf. [22].

7.2 The change of variables

As outlined in §7.1, we perform some changes of variables to the modulation
equation (11).

First, we replace ψ = ∂xφ in (11) by the pseudo-derivative χ = ϑ(φ),

which we define through its Fourier symbol ϑ̂(k) = ikmin{1, |k|−1}, see Fig-
ure 4.

This amounts to a transform Sϑ, which is defined through its Fourier
symbol Ŝϑ given by

Ŝϑ(k) =

(
min{1, |k|−1} 0

0 1

)
.

We apply Sϑ to (11) and find that Y := Sϑ(V ) =: (χ, s) satisfies the equation

∂tY = LY Y +NY (Y ), (35)
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Figure 4: The symbol of the local pseudo-derivative.

with linearity

LY =

(
∂2
x + (c− 2α)∂x ϑ (−2βσ + 2∂x + α∂2

x)
ϑ−1 (−2∂x − α∂2

x) −2σ + ∂2
x + (c− 2α)∂x

)
,

and nonlinearity

NY (Y ) =

(
ϑ (−βσh(s) + 2(∂xs)(∂xϑ

−1χ) + α(∂xs)
2 − α(∂xϑ

−1χ)2)
−σh(s) + (∂xs)

2 − (∂xϑ
−1χ)2 − 2α∂xs(∂xϑ

−1χ)

)
=:

(
ϑNY 1(Y )
NY 2(Y )

)
,

(36)

where we recall h(s) = e2s−1−2s. We note that LY is a differential operator
on L2(R), whose highest proper derivatives are of second order. In addition,
the nonlinearity NY contains besides local pseudo-derivatives only first order
proper derivatives. By construction, the first component of NY contains a
local pseudo-derivative in front.

Since for fixed k ∈ R the Fourier symbols L̂Y (k) and L̂(k) of the operators
LY and L (note that L was defined as the linear part of system (10)) are
similar matrices, the spectra of LY and L coincide. Thus, using the spectral
calculations in §3, one observes that LY has unstable spectrum close to the
origin in the parameter regime (16) but also an exponentially damped part
– see Figure 2.

The nonlinear terms corresponding to the exponentially damped part
can be controlled on the long O(1/ε3)-time scale. For the nonlinear terms
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corresponding to the weakly unstable part we exploit that they have a local
pseudo-derivative in front.

We introduce a time-dependent exponential weight, which damps at all
wave numbers of the weakly unstable part of LY except for the wave number
k = 0. We choose a µ∗ ∈ (0, µA), with µA > 0 as in Theorem 6.2. Then we
define the transform Sω(t) : H∞µ(t),m → Hm for t ∈ [0, µ∗/(ηε

3)], with µ(t) :=

(µ∗ − ηε3t)/ε, through its Fourier symbol Ŝω(t, k) = diag(ω̂(t, k), ω̂(t, k)),
where ω̂(t, k) = eµ(t)|k| and η > 0 is a k-, ε- and t-independent constant yet
to be defined. Applying Sω(t) to (35) we find that Y(·, t) := Sω(t)Y (·, t)
satisfies

∂tY = LYY +NY(t,Y), (37)

with linearity

LY = LY − ε2η|k|op,

where the pseudo-differential |k|op acts in Fourier space through multiplica-
tion by |k|. The nonlinearity in (37) is given by

NY(t,Y) = Sω(t)NY (Sω(t)−1(Y)).

The spectrum of LY is the union λ2,+[R]∪λ2,−[R], where λ2,±(k) := λ±(k)−
ε2η|k| and λ±(k) is as in §3. Lemma 3.2 provides the bounds

Re(λ2,−(k)) ≤ −σs
2
− k2, Re(λ2,+(k)) ≤ −ε2η

2
|k|, k ∈ R, (38)

provided ε > 0 is sufficiently small. Thus, LY is damped for all wave numbers
except for the wave number k = 0 – see also Figure 5.

Remark 7.1. Note that the decay with −ε2η|k| is exploited to control the
O(ε2)-terms of G in the error equation (33). For making Re(λ2,+(k)) negative
a decay proportional to ε3|k| would suffice.

That the nonlinear terms corresponding to the neutral mode really have a
local pseudo-derivative in front, can be seen after diagonalizing the operator
LY in Fourier space. We have the spectral decomposition

L̂Y(k) = Ŝdiag(k)−1L̂Z(k)Ŝdiag(k),
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Re(λ2,+)

Re(λ2,−)

k

Figure 5: The transformed spectral curves using the estimates from
Lemma 3.2.

for k ∈ R with

L̂Z(k) = diag (λ2,+(k), λ2,−(k)) , k ∈ R. (39)

and explicit representations for Ŝdiag(k) and Ŝdiag(k)−1 in Appendix A.1. In

the following we use that Ŝdiag(k) is of the form

Ŝdiag(k) =

(
s11(k) ϑ̂(k)s12(k)
s21(k) s22(k)

)
,

with smooth and bounded coefficients sij(k) and that Sdiag : Hm → Hm

given by Sdiag = F−1[ŜdiagF(·)] is an isomorphism, cf. Lemma A.1. Now,
Z := Sdiag(Y) satisfies a system of the form

∂tZ = LZZ +NZ(t,Z), (40)

with linearity LZ having the Fourier symbol L̂Z .
So, LZ has, besides the wave number k = 0, no unstable spectrum –

see (38). The nonlinearity in (40) is given by

NZ(t,Z) = SdiagNY(t, S−1
diagZ)

= Sω(t)SdiagNY (S−1
ω (t)S−1

diagZ)
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and has a local pseudo-derivative in front of the first component due to

̂SdiagNY =

(
s11 ϑ̂s12

s21 s22

)(
ϑ̂N̂Y 1

N̂Y 2

)
=

(
ϑ̂
(
s11N̂11 + s12N̂12)

s21ϑ̂N̂11 + s22N̂12

)
, (41)

where we used (36) and suppressed the k-dependency. Writing Z = (Z1,Z2),
we observe that the Z2-equation is linearly exponentially damped, whereas
the Z1-equation is exponentially damped everywhere except for k = 0.
Therefore, as outlined in §7.1, it is crucial to use the conservation law struc-
ture of the critical modes, i.e., that the first term in the nonlinearity NZ
has the local pseudo-derivative ϑ in front to compensate for the fact that
λ2,+(0) = 0 at wave number k = 0 of LZ . By Lemma A.8 the nonlinear
mapping NZ is smooth from Hs+1 to Hs for s ≥ 2.

Remark 7.2. The diagonalization operator Sdiag and the smoothing opera-
tor S−1

ω (t) commute. For deriving higher order approximations in §7.4, see
also Remark 6.6, it turns out to be advantageous to introduce Z := Sdiag(Y ),
which satisfies an equation of the form

∂tZ = LZZ +NZ(Z), (42)

where LZ is a diagonal pseudo-differential operator with Fourier symbol
diag(λ+(k), λ−(k)), where λ± are as in §3. In addition, the first compo-
nent of NZ contains a local pseudo-derivative in front, cf. (41). We refer to
Figure 6 for an overview of all transformations.

V Y Z

Y Z

- -

-

6 6

Sϑ Sdiag

Sdiag

Sω(t) Sω(t)

Figure 6: Summary of all transformations. In the equations for the variables
in roman no smoothing occurs. In the equations for the calligraphic variables
a smoothing occurs.
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Remark 7.3. The introduction of the time-dependent exponential weight
leads to decay rates of the associated semigroups, which we do not have for
etLZ : Hm → Hm. We obtain now an estimate

‖etLZϑ‖Hm→Hm ≤ C(ε, η)t−1, t > 0,

Thus, applying etLZ to the first component of NZ gives a polynomial decay
rate. The latter could possibly be used to obtain the required estimates
on the long O(1/ε3)-time scale by using the variation of constant formula
and optimal regularity theory. Instead of doing so we will work with energy
estimates.

Remark 7.4. There is a price we pay for the improved linear damping
properties in the Z-equation (40). Starting from the residual ResV (t), de-
fined in (34), we introduce the residuals ResZ(t) = SdiagSω(t)Sϑ[ResV (t)] and
ResZ = SdiagSϑ[ResV ]. In order to have the desired O(εκ+3)-residual ResZ
in Hm – see §7.1 – we require the residuals ResV and ResZ to be of order
O(εκ+3) in H∞µ∗/ε,m on an O(1/ε3)-time scale.

7.3 The approximation result for the Z-system
In order to prove Theorem 6.2 we first formulate the associated approxima-
tion result for the Z-system.

Theorem 7.5. Let m,µA, τ0 > 0, κ > 3, and A ∈ C([0, τ0], H∞µA) be a
solution to the KdV equation (4). Then there exists C, τ1, ε0 > 0 such that
for all ε ∈ (0, ε0) there exists an approximation Zκ,εapp : R × [0, τ1/ε

3] → R2

satisfying

sup
0≤ε3t≤τ1

‖Zκ,εapp(·, t)− Sω(t)SdiagSϑV
∗,ε
app(·, t)‖Hm ≤ Cε5/2, (43)

where V ∗,εapp(x, t) = (ψ∗,εapp, s
∗,ε
app)(x, t) is defined by (18)-(19) and (26), such that

there is a solution Z to the modulation equation (40) satisfying

sup
0≤ε3t≤τ1

∥∥Z(·, t)−Zκ,εapp(·, t)
∥∥
Hm ≤ Cεκ. (44)
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7.4 The improved approximation ansatz

We construct the improved approximation in system (42), which is of the
form

∂tZ1 = λ+(−i∂x)Z1 + ϑ(∂x)g1(Z1, Z2),

∂tZ2 = λ−(−i∂x)Z2 + g2(Z1, Z2),
(45)

with g1, g2 being smooth nonlinear terms for which we can compute their
Taylor expansion up to arbitrary order (see Appendix A.2). We choose c as
in (27) and make the ansatz

Z1(x, t) = ε2A0(εx, ε3t) + . . .+ εN+2AN(εx, ε3t),

Z2(x, t) = ε4B0(εx, ε3t) + . . .+ εN+3BN−1(εx, ε3t).
(46)

Under the scaling ξ = εx, using the expansions of λ±(k) about k = 0 from
§3, we have the following formal expansion in the parameter regime (16)

λ+(−i∂x) = ε3γlin∂
3
ξ +O(ε4),

λ−(−i∂x) = −2σs +O(ε),

ϑ(∂x) = ε∂ξ

with γlin = −c3,s as in §4. By substitution of (46) into (45), we therefore
find at O(ε5) in the first component of (45) the KdV equation

∂τA0 = γlin∂
3
ξA0 + γnon∂ξ(A

2
0), (47)

with γnon = β − α as in §4. At O(ε4) in the second component of (45) we
find a linear algebraic equation

0 = −2σsB0 + c∗(A0)2,

where here and in the following various coefficients are denoted by the symbol
c∗.

Remark 7.6. We computed for the ansatz in §4 that B = −σ−1A + O(ε),
such that

V ∗,εapp = ε2

(
A
B

)
+O(ε3) = ε2A

(
1
−σ−1

)
+O(ε3).
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On the other hand we have

V κ,ε
app = S−1

ϑ S−1
diagZ = ε2

(
1 ∗
−σ−1 ∗

)
A0

(
1
0

)
+O(ε3)

= ε2A0

(
1
−σ−1

)
+O(ε3).

Therefore, we have formally A = A0 + O(ε), and so the coefficients in (24)
and (47) are (to leading order) the same. On the other hand, we note that
B and B0 are not equal.

At O(ε6) in the first component of (45) we find a linearized inhomoge-
neous KdV equation

∂τA1 = γlin∂
3
ξA1 + 2γnon∂ξ(A0A1) + fA,1(A0),

where fA,1(A0) is a function, solely depending on A0 and its ξ-derivatives,
given by

fA,1(A0) = c∗∂
2
ξA0 + c∗∂

4
ξA0 + c∗∂

2
ξ ((A0)2).

The principal structure of the subsequent equations remains the same. For
example at O(ε5) in the second component of (45) we find a linear algebraic
equation

0 = −2σsB1 + fB,1(A0, A1, B0),

and at O(ε7) in the first component of (45) we find a linearized inhomoge-
neous KdV equation

∂τA2 = γlin∂
3
ξA2 + 2γnon∂ξ(A0A2) + fA,2(A0, A1, B0),

where fB,1 and fA,2 are functions which solely depend on the solutions to the
equations before, i.e., here on A0, A1, and B0 and their ξ- and τ -derivatives.
For m ∈ {3, . . . , N} at O(εm+3) in the second component of (45) we find a
linear algebraic equation

0 = −2σsBm−1 + fB,m−1(A0, . . . , Am−1, B0, . . . , Bm−2),

and at O(εm+5) in the first component of (45) we find a linearized inhomo-
geneous KdV equation

∂τAm = γlin∂
3
ξAm + 2γnon∂ξ(A0Am) + fA,m(A0, . . . , Am−1, B0, . . . , Bm−2),
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where again fB,m−1 and fA,m are functions which solely depend on the so-
lutions A0, . . . , Am−1, B0, . . . , Bm−2 and their ξ- and τ -derivative. In this
procedure also the temporal derivatives of Bm-terms occur. They can be ex-
pressed in terms of spatial derivatives of the solutions to the equations before
by differentiating the algebraic Bm-equation with respect to time and then
expressing the temporal derivatives of the solutions to the equations before
by the right hand sides. For instance we find

0 = −2σs∂τB0 + c∗A0∂τA0 = −2σs∂τB0 + c∗A0(γlin∂
3
ξA0 + γnon∂ξ((A0)2)).

Hence, if local existence and uniqueness as well as sufficient regularity can be
established for these equations, we can solve them step by step. Before we go
on, we remark that fB,m−1 and fA,m only contain finitely many derivatives.

7.5 Local existence and uniqueness for the extended
amplitude system

In this section we establish local existence and uniqueness in H∞µ,s-spaces for
the extended amplitude system

∂τA0 = γlin∂
3
ξA0 + γnon∂ξ((A0)2),

∂τA1 = γlin∂
3
ξA1 + 2γnon∂ξ(A0A1) + fA,1(A0),

...

∂τAm = γlin∂
3
ξAm + 2γnon∂ξ(A0Am) + fA,m(A0, . . . , Am−1, B0, . . . , Bm−2),

...

∂τAN = γlin∂
3
ξAN + 2γnon∂ξ(A0AN) + fA,N(A0, . . . , AN−1, B0, . . . , BN−2),

with

0 = −2σsB0 + c∗(A0)2,

...

0 = −2σsBm−1 + fB,m−1(A0, . . . , Am−1, B0, . . . , Bm−2),

...

0 = −2σsBN−1 + fB,N−1(A0, . . . , AN−1, B0, . . . , BN−2),

(48)
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which we derived in §7.4.
In order to do so we take three numbers µ, µ and µ∗ with µ > µ > µ∗ > 0.

Let
µm,0 = µ− (µ− µ)

m

N
and µm(τ) = µm,0 − ητ

for 0 < ητ < µ − µ∗, where η > 0 is some ε-independent constant. Then
we choose Am|τ=0 ∈ H∞µm,s , s sufficiently large, and look for solutions with

Am(τ) ∈ H∞µm(τ),s. Moreover, we set νm(τ) = µm(τ)− 1
2N

(µ−µ) and look for

solutions with Bm(τ) ∈ H∞νm(τ),s – see Figure 7.

τ

µ = µ0,0

...

µ = µN,0

µ∗

µ0(τ0)
ν0(τ0)
µ1(τ0)
ν1(τ0)

...
µN(τ0)

µm(τ), m = 0, . . . , N
νn(τ), n = 0, . . . , N−2

Figure 7: The left panel shows a lower bound to the width of the strip of
analyticity of the functions A0, B0, A1, . . . , BN−2, AN as a function of time τ .

Since fA,m = fA,m(A0, . . . , Am−1, B0, . . . , Bm−2) only contains finitely many
derivatives, we have for s ≥ 0 that

fA,m : H∞µ0(τ),s × . . .×H∞µm−1(τ),s ×H∞ν0(τ),s × . . .×H∞νm−2(τ),s → H∞µm(τ),s

is a bounded mapping. Similarly, we have that

fB,m−1 : H∞µ0(τ),s × . . .×H∞µm−1(τ),s ×H∞ν0(τ),s × . . .×H∞νm−2(τ),s → H∞νm−1(τ),s

is a bounded mapping. Hence, substituting Bm in fA,m by fB,m/(2σs) gives
a system of the form

∂τA0 = γlin∂
3
ξA0 + γnon∂ξ(A

2
0), (49)

∂τR = γlin∂
3
ξR + 2γnon∂ξ(A0R) + F (A0, R), (50)
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with R = (A1, . . . , AN), where F : H∞µ0(τ),s ×H∞τ,s → H∞τ,s, with

H∞τ,s = H∞µ1(τ),s × . . .×H∞µN (τ),s

is a smooth mapping.
We introduce ρ̂m(k, τ) = eµm(τ)|k| and Am(ξ, τ) via

Âm(K, τ) = ρ̂m(K, τ)Âm(K, τ). (51)

Moreover, we introduceR = (A1, . . . ,AN) and %N(τ) = diag(ρ1(τ), . . . , ρN(τ))
and have the following local existence and uniqueness results for the KdV
equation and for the extended amplitude system.

Theorem 7.7. Let A0|τ=0 ∈ H∞µ0(0),s and s ≥ 3. Then there exists τ0 > 0

and a solution A0 to (49) for τ ∈ [0, τ0] with A0(τ) ∈ H∞µ0(τ),s, where 0 <

ητ0 < µ− µ∗. Moreover A0 ∈ C([0, τ0], Hs) ∩ C1([0, τ0], L2(R)).

Theorem 7.8. Let (A0|τ=0, R|τ=0) ∈ H∞µ0(0),s × H∞0,s and s ≥ 3. Then

there exists τ0 > 0 and solutions (A0, R) to (49)-(50) for τ ∈ [0, τ0] with
(A0, R)(τ) ∈ H∞µ0(τ),s ×H∞τ,s, where 0 < ητ0 < µ − µ∗. Moreover, (A0,R) ∈
C([0, τ0], Hs) ∩ C1([0, τ0], L2(R)).

Proof. In order to prove local existence and uniqueness of solutions to (49)
and (49)-(50) and to estimate the H∞µ0(τ)-norm and the H∞µ0(τ)×H∞τ -norm of
these solutions, we proceed as in §7.2 by introducing time-dependent expo-
nential weights via (51). This transforms (49)-(50) into the system

∂τA0(τ) = −η|K|opA0(τ) + γlin∂
3
ξA0(τ)

+ γnonρ0(τ)∂ξ((ρ
−1
0 (τ)A0(τ))(ρ−1

0 (τ)A0(τ))),
(52)

∂τR(τ) = −η|K|opR(τ) + γlin∂
3
ξR(τ)

+ 2γnon%N(τ)∂ξ((ρ
−1
0 (τ)A0(τ))(%−1

N (τ)R(τ)))

+ F̌ (A0(τ)),R(τ)),

(53)

with ̂|K|opA0(K) = |K|Â0(K) and where F̌ (A0,R) is the transformed non-
linearity. Note that F̌ has a strict upper triangular structure, i.e. F̌i only
depends on A1, . . . ,Ai−1. Moreover, if A0, . . . ,Ai−1 ∈ C([0, τ0], Hs) then
F̌i ∈ C([0, τ0], Hs), 1 ≤ i ≤ N .

System (52)-(53) is a classical quasilinear system in sense of [14]. For (52)
and (52)-(53) we obtain local existence and uniqueness in the space C([0, τ0], Hs)∩
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C1([0, τ0], L2(R)) for s ≥ 3. We remark that since the quasilinear parts of (52)
and (52)-(53) have the same structure the time of existence of the solutions,
which we obtain from our construction, is the same for (52) and (52)-(53).

Remark 7.9. Alternatively, one can establish local existence and uniqueness
via optimal regularity results. Since the linear semigroup gains one derivative
and since the nonlinear terms lose one derivative, optimal regularity results
in the sense of [16, 17] can be used. We remark that the solutions to the
KdV equation stay analytic for all times [15, 26, 2].

Starting from the solution A ∈ C([0, τ0], H∞µA) to the KdV equation (4) in
Theorem 7.5 and taking µ∗ < µ0(0) < µA andA0|τ=0 = A|τ=0 in Theorem 7.8,
we obtain τ̃0 ∈ (0, τ0] and an improved approximation (A0, A1, . . . , Adκe)(τ)
lying in H∞µ∗,s such that A(τ) = A0(τ) for τ ∈ [0, τ̃0]. Now, define Zκ,ε

app by (46),
where the Bi are defined through the algebraic equations (48). As Zκ,ε

app(t)
lies in H∞µ∗/ε,s for 0 ≤ ε3t ≤ τ̃0, the transformed improved approximation

Zκ,εapp(t) := Sω(t)Zκ,ε
app(t) satisfies the desired estimate (43) in Theorem 7.5 by

construction (taking s > 0 larger if necessary), where we use µ(t) ≥ µ∗/ε for
0 ≤ ε3t ≤ τ0. All that remains to show is the error estimate (44), which will
be established in §7.7.

7.6 The residual estimates

For the improved approximation Zκ,ε
app defined in §7.4-7.5 we have the following

estimate on the residual terms.

Lemma 7.10. There exists Cres > 0 such that for all ε ∈ (0, 1) we have

sup
0≤ε3t≤τ̃0

‖ResZ(Zκ,ε
app(t))‖H∞µ∗/ε ≤ Cresε

3+κ, (54)

where we fixed µ∗ ∈ (0, µA) in §7.2 and ResZ is defined in Remark 7.2.

Proof. By the construction of the improved approximation in §7.4 we elim-
inated formally all terms of order O(ε3+κ+1/2) in the residual defined in (34).
In §7.5 we showed that for any fixed s > 0 the improved approximation
Zκ,ε
app(t) is in H∞µ∗/ε,s and so are the remaining terms small in H∞µ∗/ε,m (after

taking s sufficiently large). In detail we use Lemma A.9 and apply it on
λ+(k) + iγlink

3 = O(|k|4) as k → 0. A straightforward multilinear general-
ization of Lemma A.9 is applied on the associated kernels appearing in the
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representation of the nonlinear terms in Fourier space. As an example, in
Fourier space bilinear terms can be written as∫

b(k, k −m,m)û(k −m)û(m)dm

with kernel b, which is smooth at the origin and can be expanded like λ±.

7.7 The error estimates

Our starting system is equation (40)

∂tZ = LZZ +NZ(t,Z), (55)

with linearity LZ having the Fourier symbol L̂Z(k) = diag (λ2,+(k), λ2,−(k)),
and where the nonlinear terms are by Lemma A.8 of the form

NZ(t,Z) =

(
ϑ(B1(t,Z1,Z1) +B2(t,Z1,Z2) +B3(t,Z2,Z2) +H1(t,Z))
B4(t,Z1,Z1) +B5(t,Z1,Z2) +B6(t,Z2,Z2) +H2(t,Z)

)
,

in which the bilinear terms Bj enjoy the estimate

‖Bj(t,Z,W)‖Hs ≤ C‖Z‖Hs+1‖W‖Hs+1 , j = 1, . . . , 6, (56)

and where the higher order terms H1,2 obey

‖H1,2(t,Z)‖Hs ≤ C‖Z‖2
Hs‖Z‖Hs+1 ,

for small ‖Z‖Hs+1 .

Remark 7.11. System (55) has the properties of a semilinear parabolic
system and so local existence and uniqueness is clear [18]. The solutions
exist as long as we can bound them with our subsequent error estimates.

The improved long-wave KdV approximation Zκ,ε
app(t) defined in §7.5 for

the variable Z gives via

Zκ,εapp(t) = Sω(t)Zκ,ε
app(t) =: ε2W(t) =

(
ε2W1(t)
ε4W2(t)

)
(57)

an improved long-wave KdV approximation for the variable Z.
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We introduce the error function R by

Z = ε2W + εκR,

with R = (R1, R2). The error function R satisfies

∂tR = LZR +N (t, R) + ε−κResZ(ε2W),

with R|t=0 = 0, where

N (t)(R) := ε−κ[NZ
(
t, ε2W + εκR)−NZ(t, ε2W)

]
=:

(
ϑN1(t)(R)
N2(t)(R)

)
. (58)

We have the expansion(
ϑN1(t)(R)
N2(t)(R)

)
=

(
ε2ϑ(2B1(t,W1, R1) +B2(t,W1, R2))
ε2(2B4(t,W1, R1) +B5(t,W1, R2))

)
+

(
H3(t, R)
H4(t, R)

)
,

(59)
where H3,4 obey by Corollaries A.5 and A.6 and Lemma A.8 the estimate

‖H3,4(t, R)‖Hm ≤ Cε4‖R‖Hm+1 + C2(M)εκ‖R‖Hm‖R‖Hm+1 , (60)

as long as ‖R‖Hm ≤M , with M defined below. More precisely, one observes
from (58) and (59) that the terms in H3,4(t, R) that are nonlinear in R
are estimated by C2(M)εκ‖R‖Hm‖R‖Hm+1 , where C2(M) denotes a constant
depending on M . On the other hand, the terms in H3,4(t, R) that are linear
in R are either bilinear terms of the form Bj(t,W2, Ri) or Bj(t, Ri,W2) with
j = 1, . . . , 6, i = 1, 2 or they are (at least) quadratic in W . Consequently,
these terms are estimated by Cε4‖R‖Hm+1 using (57).

The error is estimated by the energy

E(t) :=
1

2
(‖R1(t)‖2

Hm + ‖R2(t)‖2
Hm) =

1

2
‖R(t)‖2

Hm .

We compute

∂tE = Re
(
〈R,LZR〉Hm + 〈R,N (R)〉Hm + 〈R, ε−κResZ(ε2W )〉Hm

)
. (61)

a) We start with the bound on the linear term 〈R,LZR〉Hm in (61). Using
that LZ has the Fourier symbol (39) satisfying the bounds (38), we obtain
the existence of a constant c1 > 0 such that

Re (〈R,LZR〉Hm) ≤ −ε2η

2
‖|k|1/2op R1‖2

Hm − c1‖R2‖2
Hm+1 ,
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is satisfied for ε > 0 sufficiently small, where, as above, |k|1/2op Rj is defined in

Fourier space by F(|k|1/2op Rj)(k) = |k|1/2R̂j(k).
b) Next, we bound the residual term 〈R,ResZ(ε2W)〉Hm in (61) by em-

ploying the estimate (54). Thus, using that µ(t) ≤ µ∗/ε and Sω(t) maps
H∞µ(t) continuously into Hm, it holds∣∣〈R,ResZ(ε2W)〉Hm

∣∣ ≤ C‖R‖Hm‖ResZ‖H∞
µ(t)/ε

≤ Cε3+κ (1 + E) ,

where we used the Cauchy-Schwarz and Young’s inequalities.
c) Finally, we bound the nonlinear term

〈R,N (t, R)〉Hm = 〈R1, ϑN1(t, R)〉Hm + 〈R2,N2(t, R)〉Hm .

c1) Using Corollaries A.5 and A.6, (56), (59) and (60) gives

|〈R2,N2(t, R)〉Hm|

≤ |〈R2,N2(t, R)〉Hm−1|+
∣∣∣〈|k|1/2op R2, |k|1/2op N2(t, R)

〉
Hm−1

∣∣∣
≤ 2‖R2‖Hm+1/2‖N2(t, R)‖Hm−1/2

≤ ‖R2‖Hm+1/2

(
Cε2‖R2‖Hm+1/2 + Cε2‖R1‖Hm+1/2

+C2(M)εκ‖R‖Hm‖R‖Hm+1/2)

≤ Cε‖R2‖2
Hm+1/2 + Cε3‖R‖2

Hm+1/2 + C2(M)εκ‖R‖Hm‖R‖2
Hm+1/2

under the assumption ‖R‖Hm ≤ M , where we used ε2ab ≤ εa2 + ε3b2 in the
last line.

c2) Similarly, we estimate

|〈R1,H3(t, R)〉Hm| ≤ 2‖R1‖Hm+1/2‖H3(t, R)‖Hm−1/2

≤ ‖R1‖Hm+1/2

(
Cε4‖R‖Hm+1/2 + C2(M)εκ‖R‖Hm‖R‖Hm+1/2

)
≤
(
Cε4 + C2(M)εκ

)
‖R‖2

Hm+1/2 ,

as long as ‖R‖Hm ≤M .
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c3) Finally, using that the symbol of |k|−1
op ϑ is bounded at the wave

number k = 0, we find by (56)∣∣〈R1, ε
2ϑBj(t,W1, Rj)

〉
Hm

∣∣ ≤ ε2‖|k|1/2op R1‖Hm‖|k|−1/2
op ϑBj(t,W1, Rj)‖Hm

≤ ε2‖|k|1/2op R1‖Hm‖ϑ1/2Bj(t,W1, Rj)‖Hm−1/2

≤ Cε2‖|k|1/2op R1‖Hm‖ϑ1/2W1‖Wm+1/2
‖R‖Hm+1/2

+ Cε2‖|k|1/2op R1‖Hm‖W1‖Wm+1/2
‖ϑ1/2R‖Hm+1/2

≤ Cε5/2‖|k|1/2op R1‖Hm‖R‖Hm + Cε2‖|k|1/2op R1‖Hm‖|k|1/2op R‖Hm

≤ C(ε2‖|k|1/2op R1‖2
Hm + ε2‖R2‖2

Hm+1/2 + ε3‖R1‖2
Hm+1/2)

where we used that ‖ϑ1/2W1‖Wm+1/2
= O(ε1/2) due to Corollary A.10, and

ε5/2ab ≤ ε2a2 + ε3b2. The bound on
∣∣〈R1, ε

2ϑBj(Rj,W1)〉Hm

∣∣ is analogous.
d) Before we summarize all estimates we introduce the following notation.

Constants which do not depend on E are denoted by C1, constants only
depending on the residual are called Cres, and constants which depend on M
are called, with some slight abuse of notation, again C2(M).

Applying the above estimates to (61) yields

∂tE ≤ −ε2η

2
‖K

1
2R1‖2

Hm − c1‖R2‖2
Hm+1

+ C1(ε2‖|k|1/2op R1‖2
Hm + ε2‖R2‖2

Hm+1/2 + ε3‖R1‖2
Hm+1/2)

+ C1ε‖R2‖2
Hm+1/2 + C1ε

3‖R‖2
Hm+1/2 + C2(M)εκ‖R‖Hm‖R‖2

Hm+1/2

+ Cresε
3 (1 + E(t))

≤ (−ε2η

2
+ C1ε

2 + C1ε
3 + C2(M)εκ‖R‖Hm)‖|k|1/2op R1‖2

Hm

+ (−c1 + C1ε
2 + C1ε+ C1ε

3 + C2(M)εκ‖R‖Hm)‖R2‖2
Hm+1/2

+ 2C1ε
3‖R1‖2

Hm + C2(M)εκ‖R‖3
Hm + Cresε

3 (1 + E(t))

under the assumption ‖R‖Hm ≤M .
Suppose now

− c1 + C1ε
2 + C1ε+ C1ε

3 + C2(M)εκM < 0, (62)

and
− η

2
+ C1 + C1ε+ C2(M)εκ−2‖R‖Hm < 0. (63)
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Then, we end up with

∂tE ≤ 2C1ε
3‖R1‖2

Hm + C2(M)εκ‖R‖3
Hm + Cresε

3 (1 + E)

≤ 2C1ε
3E + ε3E + Cresε

3 (1 + E) ,

as long as
C2(M)εκ−3M ≤ 1. (64)

Under this condition, (63) simplifies into

− η

2
+ 2C1 + 1 < 0. (65)

We choose now η > 0 so large that (65) is satisfied. Via Grönwall’s inequality
we then deduce

E(t) ≤ Cresε
3te(2C1+1+Cres)ε3t ≤ Cresτ1e

(2C1+1+Cres)τ1 =: M2,

for 0 < ε3t ≤ τ1. We are done if we choose ε0 > 0 so small that (62) and (64)
are satisfied for all ε ∈ (0, ε0) for this definition of M .

7.8 From Theorem 7.5 to Theorem 6.2

By proving Theorem 7.5, we have obtained a KdV approximation result for
the Z-variable. It remains to the transfer this result to the V -variable, i.e.,
to conclude Theorem 6.2 from Theorem 7.5. We have

Z(t) = Sω(t)SdiagSϑV (t), resp. V (t) = S−1
ϑ S−1

diagS
−1
ω(t)Z(t).

Combining Lemma A.1, Lemma A.2, and Lemma A.3 shows that Sω(t)SdiagSϑ
is an isomorphism between H∞µ(t),m−1×H∞µ(t),m and (Hm)2 as long as µ(t) ≥ 0.

Since H∞µ(t),m−1 ×H∞µ(t),m can be embedded in every Hs-space for 0 ≤ ε3t ≤
τ1 the estimates (28) and (29) follow immediately from the estimates (43)
and (44).

8 Discussion

In §8.1 we discuss the approximation result in the original coordinate system,
in §8.2 what happens if we work in Sobolev spaces instead of spaces of analytic
functions, in §8.3 whether other formally derived amplitude equations at
the Eckhaus boundary are valid or not, and finally in §8.4 we explain that
although the KdV equation can also be derived in the parameter region Ah,
it makes wrong predictions in Ah.
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8.1 The approximation result in the original variables

The modulations (φ, s) in (5) satisfy (10) in the coordinates (9). To regain
the phase φ from the local wave number ψ = ∂xφ, we have to integrate
the pointwise bound in Theorem 6.2, leading to an error bound on a spatial
interval of length O(ε−ρ) with arbitrary – but fixed – ρ > 0, rather than
an R-uniform error bound. Moreover, we have to allow for a global phase
eiφ(X0,T ). These two restrictions have been observed in other papers before,
see [19, Section 4] and [8, Corollary 2.2]. We consider the Ginzburg-Landau
equation (1) in the original coordinates X,T and with some abuse of notation
we denote the variables depending on the new coordinates x, t introduced
in (9) by the same symbols.

We have to compare the modulated wave-train solution

Ψ(X,T ) = Ψper(X,T ) exp

(
s(X,T ) + i

∫ X

X0

ψ(X ′, T )dX ′ + iφ(X0, T )

)
to (1) with the approximation

Ψκ,ε
app(X,T ) = Ψper(X,T ) exp

(
sκ,εapp(X,T ) + i

∫ X

X0

ψκ,εapp(X
′, T )dX ′

)
,

for some X0 ∈ R. By Theorem 6.2 it holds∣∣exp(−iφ(X0, T ))Ψ(X,T )−Ψκ,ε
app(X,T )

∣∣
≤ C

(∣∣s(X,T )− sκ,εapp(X,T )
∣∣+

∫ X

X0

∣∣ψ(X ′, T )− ψκ,εapp(X ′, T )
∣∣ dX ′)

≤ C

(
εκ +

∫ X

X0

εκdX ′
)

≤ Cεκ(1 + |X −X0|).

Hence, using the improved approximations Ψκ,ε
app the approximation result

holds uniformly on intervals larger than the natural O(1/ε) spatial scale of
the KdV equation. However, due to ∂Tφ(X0, T ) = O(ε2), which implies
supT∈[0,τ1/ε3] |φ(X0, T )| = O(1/ε), only the amplitude of the modulated wave
train is well-approximated, but not its position. In spaces of sufficiently
spatially localized functions the above estimates may be improved.
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8.2 From analytic initial conditions to Sobolev initial
conditions?

It is a natural question whether we can replace the spaces H∞µ,m by classical
Sobolev spaces Hm, i.e., what happens if we give up analyticity in a strip in
the complex plane and choose the solutions to the KdV equation to be only
finitely many times differentiable. We have no answer at this point and have
to postpone the question to future research. The difficulty comes from the
terms in the error equation associated to the nonlinear term γnon∂ξ(A

2) in
the KdV equation, namely

ε2ϑ2(B1(W1, R1) +B2(W1, R2))

in (59), which is of O(ε2), but its influence has to be estimated O(ε3). Due to
the marginal sideband instability, the smoothing of the linear part is too weak
to gain additional powers of ε. This was the reason why we used the artificial
smoothing through Sω(t). If we do not want use the artificial smoothing, we
have to find an energy in which this term is O(ε3).

8.3 Approximation results for other amplitude equa-
tions appearing at the Eckhaus boundary

As explained in the introduction, in [27] various other amplitude equations
for the description of slow modulations in time and space of wave-train solu-
tions to the Ginzburg-Landau equation have been derived near the Eckhaus
boundary.

For α = β the coefficients γlin and γnon vanish simultaneously and so the
ansatz has to be modified to

ψ∗,ε(x, t) = ε2A(εx, ε4t), s∗,ε(x, t) = ε2B(εx, ε4t),

and a Cahn-Hilliard equation

∂τA = ν2∂
2
ξA+ ν4∂

2
ξA+ νnon∂ξ(A

2),

with real-valued coefficients ν2, ν4 < 0, and νnon can be derived. The justi-
fication of the Cahn-Hilliard approximation is again a non-trivial task since
solutions of O(ε2) have to be estimated on an O(1/ε4)-time scale. In case
α = β = 0 an approximation result has been established in [7]. For α = β 6= 0
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we conjecture that the justification of the Cahn-Hilliard equation, goes very
similar to [24, 6].

For (α, β) in the parameter region Ah, the wave train (2) becomes un-
stable via a Hopf-Turing instability, cf. Figure 1. As explained in [27] de-
pending on the scaling a number of different amplitude systems, such as a
single Ginzburg-Landau equation, can be derived. The instability scenario
is similar to the one of pattern forming systems, with a conservation law,
close to the first instability of the homogeneous rest state. The validity of
the Ginzburg-Landau approximation for such pattern forming systems has
been considered in [12]. We expect that the justification proof given in [12]
can be adapted to cover the present situation.

8.4 Failure of the KdV approximation

Due to its long-wave character, also in the region Ah, see Figure 1, a KdV
equation can be formally derived, although there is an O(1)-instability at a
wave number k1 6= 0, cf. Figure 8. Thus, the derivation of the KdV equation
in §4 is independent of whether we are in the parameter region As or Ah.
However, the justification analysis is not.

O(1)

O(1)

k

Re(λ+)

O(1)

O(ε4)

O(1)

k

Re(λ+)

Figure 8: The spectral curve λ+ in the parameter region Ah before and after
the sideband instability occurred for a wave train which is already Hopf-
Turing unstable.

For solutions to the KdV equation in H∞µA,m the corresponding solution

to the Ginzburg-Landau equation (1) is initially of order O(e−µ|k|/ε) at a
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wave number k. For a wave number k1 with O(1) growth rates at k1, cf.
Figure 8, already for t = O(1/ε) the solution is O(1) and for t = O(1/ε3) the
growth rate is O(e1/ε2). Therefore, the original system is expected to behave
completely different as predicted by the KdV equation. For 2π/k1-spatially
periodic solutions this can possibly be made rigorous with the help of a center
manifold reduction similar to [23].

A Some technical estimates

A.1 Estimates for the change of coordinates

We compute

Ŝdiag(k) =

(
1 − (1−υ(k))ϑ̂(k)

γ(k)

−1 (1+υ(k))ϑ̂(k)
γ(k)

)
=:

(
s11(k) ϑ̂(k)s12(k)
s21(k) s22(k)

)
,

Ŝdiag(k)−1 =
1

2υ(k)

(
1 + υ(k) 1− υ(k)

ϑ̂(k)−1γ(k) ϑ̂(k)−1γ(k)

)
,

where we recall from §3 that γ(k) = (αk2 − 2ik)/σ and υ(k) is the principal
square root

√
1− γ(k)2 − 2βγ(k). One readily verifies sij ∈ L∞(R,C) for

i, j ∈ {1, 2} and Ŝdiag, Ŝdiag
−1
∈ L∞(R,Mat2×2(C)). As a direct consequence

of these pointwise estimates we find

Lemma A.1. For µ ≥ 0 and s ≥ 0 the linear mapping Sdiag : H∞µ,s → H∞µ,s
is bijective and bounded with bounded inverse. The similar statement is true
in the Wµ,m-spaces.

Proof. We have

‖S±1
diagu‖H∞µ,s ≤ ‖Ŝdiag

±1
‖L∞(R,Mat2×2(C))‖u‖H∞µ,s ≤ Cdiag‖u‖H∞µ,s .

The estimates in Wµ,s follow similarly.
Analogously, we establish

Lemma A.2. For µ ≥ 0 and s ≥ 0 the linear mapping Sϑ : H∞µ,s−1×H∞µ,s →
(H∞µ,s)

2 is bijective and bounded with bounded inverse.

Finally we have
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Lemma A.3. For t ∈ [0, µ∗/(ηε
3)] the linear mapping Sω(t) : H∞µ(t),s → Hs,

with µ(t) = (µ∗− ηε3t)/ε is bijective and bounded with bounded inverse. The
similar statement is true in the Wµ,s-spaces.

Proof. This follows immediately from the definitions.

A.2 Estimates for the nonlinear terms

Lemma A.4. The spaces H∞µ,s are Banach algebras for µ ≥ 0 and s > 1
2
. In

detail, there exists a µ-independent constant Cs such that

‖uv‖H∞µ,s ≤ Cs‖u‖H∞µ,s‖v‖H∞µ,s
for all u, v ∈ H∞µ,s.

Proof. Suppose that u and v are in H∞µ,s. Then

‖uv‖H∞µ,s ≤ ‖(1 + k2)s/2(|eµ|·|û| ∗ |eµ|·|v̂|)(k)‖L2(k)

≤ C̃s
(
‖(1 + k2)s/2eµ|k|û(k)‖L2(k)‖eµ|k|v̂(k)‖L1(k)

+‖eµ|k|û(k)‖L1(k)‖(1 + k2)s/2eµ|k|v̂(k)‖L2(k)

)
≤ Cs‖(1 + k2)s/2eµ|k|û(k)‖L2(k)‖(1 + k2)s/2eµ|k|v̂(k)‖L2(k)

= Cs‖u‖H∞µ,s‖v‖H∞µ,s ,

where we used the continuous embedding L2(R, (1 + |x|2)dx) ↪→ L1(R) for
s > 1

2
and Young’s inequality.

For our error estimates we need the following tame estimates.

Corollary A.5. For δ > 0, µ ≥ 0 and s > 1/2 we have

‖u2‖H∞µ,s ≤ Cs‖u‖H∞
µ,1/2+δ

‖u‖H∞µ,s

for all u ∈ H∞µ,s.

Proof. This follows obviously from the proof of Lemma A.4.

Corollary A.6. For µ ≥ 0 and s ≥ 0 we have

‖uv‖H∞µ,s ≤ Cs‖u‖Wµ,s‖v‖H∞µ,s
for all u ∈ Wµ,s and v ∈ H∞µ,s.
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Proof. This follows obviously from the proof of Lemma A.4.

Corollary A.7. The entire function h : C→ C defined by h(s) = e2s − 1−
2s =

∑∞
j=2 hjs

j with hj = 2j/j! defines via u 7→ h(u) an entire function in

H∞µ,s for µ ≥ 0 and s > 1
2
.

Proof. The series converges absolutely, since h is an entire function, h(0) = 0,
and H∞µ,s is a Banach algebra for µ ≥ 0 and s > 1

2
according to Lemma A.4.

Lemma A.8. The nonlinear mapping NZ(t) is smooth from Hs+1 to Hs for
s ≥ 2 and t ∈ [0, µ∗/(ηε

3)].

Proof. From the explicit representation (36) of NY , Lemma A.4 and Corol-
lary A.7 it follows that NY is a smooth mapping from H∞µ,s+1 to H∞µ,s for
µ ≥ 0 and s > 3

2
. From Lemma A.3 it follows that NY is a smooth mapping

Hs+1 to Hs. Finally, Lemma A.1 implies that NZ is a smooth mapping Hs+1

to Hs (see also Figure 6).

A.3 An inequality for the residual estimates

The formal expansion of the curve of eigenvalues and of the kernels in the
multilinear maps can be estimated with the aid of the following lemma.

Lemma A.9. Let ϑ0 ≥ 0, ϑ∞ ∈ R, and let g : R→ C satisfy

|g(k)| ≤ C min(|k|ϑ0 , (1 + |k|)ϑ∞).

Then for the associated multiplication operator gop = F−1gF the following
holds. For i) µ1 > µ2 and m1,m2 ≥ 0 or ii) µ1 = µ2 and m2 − m1 ≥
max(ϑ0, ϑ∞) we have

‖gopA(ε·)‖H∞
µ1/ε,m1

≤ Cεϑ0−1/2‖A(·)‖H∞µ2,m2

for all ε ∈ (0, 1).

Proof. This follows immediately from the fact that the left-hand side of this
inequality can be estimated by

≤ sup
k∈R

∣∣∣∣∣∣g(k)

(
1 +

(
k

ε

)2
)m1−m2

2

e(µ1−µ2)|k|/ε

∣∣∣∣∣∣ ‖A(ε·)‖H∞
µ2/ε,m2

≤ Cεϑ0 ε−1/2‖A(·)‖H∞µ2,m2
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where the loss of ε−1/2 is due to the scaling properties of the L2-norm.
In Wµ,m-spaces there is no ε−1/2 loss due to the scaling invariance of the

norm and so we have as a direct consequence:

Corollary A.10. Let ϑ0 ≥ 0, ϑ∞ ∈ R, and let g(k) satisfy

|g(k)| ≤ C min(|k|ϑ0 , (1 + |k|)ϑ∞).

Then for the associated operator gop = F−1gF the following holds. For i)
µ1 > µ2 and m1,m2 ≥ 0 or ii) µ1 = µ2 and m2−m1 ≥ max(ϑ0, ϑ∞) we have

‖gopA(ε·)‖Wµ1/ε,m1
≤ Cεϑ0‖A(·)‖Wµ2,m2

for all ε ∈ (0, 1).
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[12] T. Häcker, G. Schneider, and D. Zimmermann. Justification of the
Ginzburg-Landau approximation in case of marginally stable long waves.
J. Nonlinear Sci., 21(1):93–113, 2011.

[13] T. Kapitula. On the nonlinear stability of plane waves for the Ginzburg-
Landau equation. Commun. Pure Appl. Math., 47(6):831–841, 1994.

[14] T. Kato. Quasi-linear equations of evolution, with applications to partial
differential equations. In Spectral theory and differential equations (Proc.
Sympos., Dundee, 1974; dedicated to Konrad Jörgens), pages 25–70.
Lecture Notes in Math., Vol. 448. Springer, Berlin, 1975.

[15] T. Kato and K. Masuda. Nonlinear Evolution Equations and Analyticity.
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