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Abstract. The Peaceman–Rachford alternating direction implicit (ADI) method
is considered for the time-integration of a class of wave-type equations for linear,
isotropic materials on a tensorial domain, e.g., a cuboid in 3D or a rectangle in 2D.
This method is known to be unconditionally stable and of conventional order two.
So far, it has been applied to specific problems and is mostly combined with finite
differences in space, where it can be implemented at the cost of an explicit method.

In this paper, we consider the ADI method for a discontinuous Galerkin (dG)
space discretization. We characterize a large class of first-order differential equations
for which we show that on tensorial meshes, the method can be implemented with
optimal (linear) complexity.

1 Introduction

In this paper, we investigate the efficiency of the Peaceman–Rachford scheme
applied to a directional splitting for a central fluxes dG space discretization of
the split operators. We characterize a class of wave-type problems for which
we show that one timestep of the fully discrete scheme can be performed in
linear complexity w.r.t. the total number of spatial degrees of freedom.

We start by providing definitions and results used to describe the afore-
mentioned class of problems, which is then introduced in Section 2. In Sec-
tion 3, we review the methods used for discretization and Section 4 is devoted
to the efficiency of this discretization. Section 5 then provides some numerical
tests to confirm the theoretical results.

1.1 Notation

Throughout the paper, we denote the ith canonical unit vector by ei and
the ith component of a vector v by vi. By (·, ·)S , we denote the standard L2

inner product over a set S and by δij the Kronecker delta. Further, if S is a
countable set, we denote the number of its elements by |S|.

1.2 Operators with decoupled partial derivatives

In order to characterize problems enabling a splitting for which the Peace-
man–Rachford method can be performed in linear complexity we start with
some definitions.
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Definition 1. Let M1, . . . ,Md ∈ Rm×m be symmetric matrices and denote
by Ii = {j ∈ {1, . . . ,m} | Miej 6= 0} the set of indices of non-zero columns
(or rows) in Mi, i = 1, . . . , d. Then we call M1, . . . ,Md ∈ Rm×m decoupled
block-diagonal if Ii ∩ Ij = ∅ for all i 6= j.

Hence, d symmetric and decoupled block-diagonal matrices have pairwise
disjoint non-zero rows and columns. The name decoupled block-diagonal is
motivated by the following property.

Theorem 2. Let M1, . . . ,Md ∈ Rm×m be symmetric and decoupled block-
diagonal. Then there is a permutation matrix P ∈ Rm×m s.t. for all i =
1, . . . , d, the matrix PTMiP is block diagonal with at most one non-zero di-
agonal block which vanishes in all other matrices PTMjP , j 6= i.

Proof. The assertion follows from the symmetry of the matrices Mi if we
reorder the rows and columns by the indices in I1, then I2, . . . , Id, and last
the indices of those columns which vanish in all matrices. ut

Using this notion, we characterize first order differential operators, whose
partial derivatives completely decouple.

Definition 3. Let M =
∑d
i=1Mi∂i be a first order differential operator with

symmetric matrics Mi ∈ Rm×m, i = 1, . . . , d. We say that M has decoupled
partial derivatives if M1, . . . ,Md are decoupled block-diagonal.

2 Framework

Let Ω ⊂ Rd be a bounded paraxial tensorial domain with boundary ∂Ω and
let n be the outer unit normal on ∂Ω. Further, let L =

∑d
i=1 Li∂i, A =∑d

i=1Ai∂i, B =
∑d
i=1Bi∂i, with symmetric matrices Li, Ai, Bi ∈ Rm×m.

We consider homogeneous first order wave-type equations of the form

∂tu(t) = Lu(t) = (A+B)u(t), t ∈ [0, T ], u(0) = u0, (1)

where A and B have decoupled partial derivatives.
This class of problems includes, e.g., advection and wave equations in 2D

and Maxwell’s equations in 3D. These examples are given as follows.

2D advection equation Here, we have m = 1, Li = αi for i = 1, 2 with
the advection velocity vector α. We consider homogeneous inflow boundary
conditions, i.e., u(t) = 0 on the inflow boundary ∂Ω− = {x ∈ ∂Ω | α·n < 0 }.
The split operators are given by A1 = α1, A2 = 0 and B1 = 0, B2 = α2 and
the boundary conditions are given by n1u(t) = 0 on ∂Ω− for A and n2u(t) = 0
on ∂Ω− for B, respectively
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2D wave equation Here, we have m = 3 and

u =

 p
q1
q2

 , L1 = e1e
T
2 + e2e

T
1 , L2 = e1e

T
3 + e3e

T
1 .

We consider homogeneous Dirichlet boundary conditions, i.e., p(t) = 0 on
∂Ω. The split operators are given by A1 = L1, A2 = 0 and B1 = 0, B2 = L2

with boundary conditions given by n1p(t) = 0 on ∂Ω for A and n2p(t) = 0
on ∂Ω for B, respectively.

3D Maxwell’s equations Here, we have m = 6 and

u =

(
E
H

)
, Li =

(
0 L̃Ti
L̃i 0

)
,

where L̃1 = e2e
T
3 −e3eT2 , L̃2 = e3e

T
1 −e1eT3 and L̃3 = e1e

T
2 −e2eT1 . We consider

perfectly conducting boundary conditions, i.e.,
∑3
i=1 L̃iniE = 0 on ∂Ω. The

split operators are given by (cf. [5,7])

Ai =

(
0 ÃTi
Ãi 0

)
, Bi =

(
0 B̃Ti
B̃i 0

)

with Ã1 = −B̃T1 = e2e
T
3 Ã2 = −B̃T2 = e3e

T
1 Ã3 = −B̃T3 = e1e

T
2 and we

subject A to
∑3
i=1 ÃiniE = 0 and B to

∑3
i=1 B̃iniE = 0 on ∂Ω.

Remark 4. For ease of presentation, we omit material parameters in this pa-
per. However, in the case of isotropic materials, all statements apply with only
minor changes: the operator D−1L with D = diag(δ1, . . . , δm), δ1, . . . , δm ∈
L∞(Ω), takes over the role of L (and analogously for A and B) and the av-
erage in the dG-discretization (see below) is replaced by a weighted average,
taking possible jumps in the material parameters into account. Further, these
parameters have to be incorporated into the mass matrix. Because of the di-
agonal structure of D, no further coupling is introduced, and the efficiency
analysis can be performed completely analogously.

3 Discretization

In this section, we review the Peaceman–Rachford scheme for the temporal
discretization [6] and the central flux discontinuous Galerkin (dG) scheme
[2,3] used for the spatial discretization.
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3.1 Temporal discretization

The Peaceman–Rachford scheme [6] applied to (1) reads

(I − τ
2A)un+1/2 = (I + τ

2B)un,

(I − τ
2B)un+1 = (I + τ

2A)un+1/2.

This scheme is of (conventional) order two and unconditionally stable if A
and B are dissipative operators (see, e.g., [4]). It requires the solution of two
linear systems whose coefficient matrices are given by the spatially discrete
counterparts of I − τ

2A or I − τ
2B. However, if the operators A and B have

decoupled partial derivatives (cf. Definition 3), we will show that this can
be achieved in optimal (linear) complexity w.r.t. the total number of spatial
degrees of freedom.

Remark 5. If the spatial dimension d exceeds two, the advection and wave
equation do not admit a splitting into two operators with decoupled partial
derivatives. To preserve the linear complexity for solving the occuring lin-
ear systems, a splitting with d split operators would have to be employed.
However, a straightforward generalization of the Peaceman–Rachford method
seems to lack either stability or accuracy in general.

Alternatively, one can recover linear complexity for higher spatial dimen-
sions d by employing a Lie-type scheme of the form

un+1 = (I − τAd)−1 · · · (I − τA2)−1(I − τA1)−1un,

for L = A1 + . . .+Ad. This scheme is unconditionally stable and of (conven-
tional) order one.

3.2 Spatial discretization

We use a central flux dG method to discretize the split differential operators in
space [2,3]. For this, we equip Ω with a mesh T = {K} consisting of paraxial
tensor-structured elements. We gather the faces of T in the set F = {F},
which is further decomposed into the set of interior faces F int and the set of
boundary faces Fbnd.

Due to the tensorial structure of the mesh, normal vectors to the faces
in F are ±ej for some j ∈ {1, . . . , d}. For F ∈ F we denote the unit normal
vector to F in positive coordinate direction by nF . Hence, we have

Fα =
⋃̇d

i=1
Fα,i, Fα,i = {F ∈ Fα | nF = ei }, α ∈ { int, ext }, (2)

where Fα,i are the sets of faces with normals pointing in the ith direction.
For each interior face F ∈ F int, we additionally denote the two elements
containing F as KF

1 and KF
2 , where the numbering is done s.t. nF is the

outer normal to KF
1 .
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To approximate functions in space, we use the broken polynomial space

Vh = { v ∈ L2(Ω) | v|K ∈ Pk for all K ∈ T }, (3)

where Pk denotes the set of polynomials of degree at most k in each variable.
We could also allow the polynomial degree k to depend on K, but for the sake
of presentation we do not pursue this further in this paper. For the efficiency
analysis, we consider the basis

Vh =
⋃
K∈T
{φK1 , . . . , φKNk

}

of Vh, where supp(φKi ) ⊂ K for i = 1, . . . , Nk, e.g., a standard discontinuous
Lagrange basis. Since functions in the space Vh may be discontinuous across
the faces of the mesh, we define the average and the jump of a (possibly
vector-valued) function v over an interior face F ∈ F int as

{{v}}F =
(v|KF

1
)|F + (v|KF

2
)|F

2
, JvKF = (v|KF

1
)|F − (v|KF

2
)|F .

Let uh, ϕh ∈ Vh. We define the central flux dG-discretization ∂i,h of ∂i as

(∂i,huh, ϕh)Ω =
∑
K∈T

(∂iuh, ϕh)K −
∑

F∈F int

(nFi JuhKF , {{ϕh}}F )F

=
∑
K∈T

(∂iuh, ϕh)K −
∑

F∈F int,i

(JuhKF , {{ϕh}}F )F ,
(4)

where the second equality follows by the definition of F int,i in (2). With this,
we define the dG-discretization of the split operators for uh, ϕh ∈ V mh as

(Ahuh, ϕh)Ω =

d∑
i=1

(Ai∂i,huh, ϕh)Ω − bA(uh, ϕh),

(Bhuh, ϕh)Ω =

d∑
i=1

(Bi∂i,huh, ϕh)Ω − bB(uh, ϕh),

(5)

where ∂i,h is meant to act componentwise and bA, bB model the boundary
conditions of the corresponding operators, respectively. The concrete bound-
ary terms for the examples in Section 2 are as follows.

2D advection equation (homogeneous inflow boundary conditions) For
uh, ϕh ∈ Vh, we have

bA(uh, ϕh) =
∑

F∈Fbnd,1
−

(α1uh, ϕh)F , bB(uh, ϕh) =
∑

F∈Fbnd,2
−

(α2uh, ϕh)F ,

where F ∈ Fbnd,i
− = {F ∈ Fbnd,i | F ∩ ∂Ω− 6= ∅ }.
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2D wave equation (homogeneous Dirichlet boundary conditions) For uh =
(ph, q1,h, q2,h)T , ϕh = (φh, ψ1,h, ψ2,h)T ∈ V 3

h , we have

bA(uh, ϕh) =
∑

F∈Fbnd,1

(ph, ψ1,h)F , bB(uh, ϕh) =
∑

F∈Fbnd,2

(ph, ψ2,h)F .

3D Maxwell’s equations (perfectly conducting boundary conditions) For
uh = (ETh , H

T
h )T , ϕh = (ΦTh , Ψ

T
h )T ∈ V 6

h , we have

bA(uh, ϕh) =

3∑
i=1

∑
F∈Fbnd,i

(ÃiEh, Ψh)F ,

bB(uh, ϕh) =

3∑
i=1

∑
F∈Fbnd,i

(B̃iEh, Ψh)F .

4 Efficiency

In this section, we investigate the efficiency of the Peaceman–Rachford dG
scheme, which is mainly determined by the cost to solve linear systems in-
volving the discrete counterparts of I− τ

2A and I− τ
2B, respectively. We show

that, using a suitable ordering of the degrees of freedom, the corresponding
matrices have block-tridiagonal structure, where the block-sizes only depends
on the polynomial degree k and the number of indices in the corresponding
set Ii, but is independent of the total number of degrees of freedom. Hence,
the corresponding systems can be solved in linear time.

The mass matrix resulting from the discretization of I is block-diagonal if
the degrees of freedom are ordered elementwise, which is well-known for dG-
methods. Hence, it suffices to investigate the non-zero patterns of the matrices
corrsponding to Ah and Bh, respectively. As these are defined in terms of the
discrete partial derivatives ∂i,h, i = 1, . . . , d, we begin by investigating them.

4.1 Structure of ∂i,h

To investigate the non-zero pattern of the discrete partial derivatives, we
insert the basis functions in Vh into the bilinear form (4). For K1 6= K2, we
have ∑

K∈T
(∂iφ

K1
j , φK2

` )K = 0, j, ` = 1, . . . , Nk,

since supp(φKi ) ⊂ K. Hence, if we order the basis functions elementwise,
these terms only contribute to the blockdiagonal with block-width Nk.

For the sum over the interfaces, we obtain contributions outside of the
blockdiagonal. However, for F 6⊂ ∂K, we have

{{φKj }}F = 0, JφKj KF = 0.
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Hence, for K1 and K2 with K1 ∩K2 /∈ F int,i, i.e., K1 and K2 not sharing a
common face with normal in the ith direction, it holds∑

F∈F int,i

(JφK1
j KF , {{φK2

` }}F )F = 0, j, ` = 1, . . . , Nk.

Thus, these terms only contribute to off-blockdiagonal entries if the corre-
sponding basis functions are non-zero on elements sharing such a face. If we,
in addition to ordering the degrees of freedom elementwise, order the elements
of the mesh along these normal vectors, the only additional entries appear in
the first sub- and super-blockdiagonals. Altogether, with this ordering of the
degrees of freedom, the discretized partial derivative ∂i,h is represented by a
block-tridiagonal matrix.

4.2 Structure of the discrete split operators

To investigate the non-zero pattern of the discrete split operators, we insert
the basis functions in Vmh into the bilinear forms (5). We only consider Ah,
since for Bh one can proceed completely analogously.

According to the index sets from Definition 1 corresponding to A, we

decompose the basis Vmh into Vmh =
⋃̇d
i=1Vmh,i, where

Vmh,i =
⋃̇

j∈Ii
{φ ej | φ ∈ Vh }.

For ψ1 ∈ Vmh,i and ψ2 ∈ Vmh,j , there exist `1 ∈ Ii, `2 ∈ Ij and φ1, φ2 ∈ Vh s.t.
ψ1 = φ1e`1 , ψ2 = φ2e`2 . This implies

d∑
r=1

(Ar∂r,hψ1, ψ2)Ω =

d∑
r=1

eT`2Are`1(∂r,hφ1, φ2)Ω = δije
T
`2Aie`1(∂i,hφ1, φ2)Ω ,

where the last equality follows as a consequence of Theorem 2, sinceA1, . . . , Ad
are symmetric and decoupled block diagonal. Hence, basis functions belong-
ing to different Vmh,i, i = 1, . . . , d completely decouple. By ordering the basis
functions according to these sets, we thus obtain (up to) d diagonal blocks.
The structure of these blocks is determined by the structure of (∂i,hφ1, φ2),
which was analyzed in Section 4.1. Therefore, by ordering the elements, and
thus the basis functions in Vmh,i belonging to them, according to the applied
partial derivative, we obtain a block-tridiagonal structure for each i = 1, . . . , d
and thus globally, since these blocks decouple. However, in contrast to Sec-
tion 4.1 the block-size is |Ii|Nk, i = 1, . . . , d, since per element we have Nk
basis functions for each index in Ii which are coupled through Ai.

For the boundary conditions used in the examples above, no further cou-
pling is introduced by the boundary terms bA and bB , respectively. This can
be seen with a similar argument as for the interfaces. Hence, these terms do
not change the block-tridiagonal structure.
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Remark 6. It is possible to generalize the method to domains consisting of a
union of paraxial tensorial domains without losing its linear complexity. This
can be seen with the same arguments as above if a tensorial mesh is used to
discretize each subdomain.

The tensorial structure of the mesh (or the submeshes), however, is indis-
pensable for the efficiency of the method. Without this structure, the normal
vectors of the element faces have multiple non-zero entries. This results in
coupling between neighboring elements w.r.t. more than one face, which de-
stroys the linear complexity of the overall scheme.

Remark 7. One can further speed up the method by using a tensorial basis
for the space Vh. This is due to the fact that the inner products in (4) then
reduce to a product of one-dimensional integrals. This leads to a Kronecker-
product structure of the resulting matrices, which can be exploited to solve
the occuring linear systems more efficiently.

Note, however, that in the case of general isotropic materials, this is only
possible if the material parameters have product structure as well. The reason
for this is that inner products weighted by these parameters have to be used
to compute the mass matrix. The reduction of these inner products to one-
dimensional integrals is only possible, if the weights have product structure.

5 Numerical Results

We implemented the method in deal.ii [1] for Maxwell’s equations to verify
the theoretical results. Upon request, the code to conduct these experiments
will be provided.

The computational domain is Ω = [0, 2]× [0, 1]2 with material parameters
chosen to be constant. For the solution of the linear systems in each timestep,
a standard UMFPACK solver is used. For comparison, runtimes of the explicit
Verlet or leap-frog method with the same configurations are shown.

The runtimes illustrated in Fig. 1 clearly show that the method takes only
about 3.5 times longer than the explicit Verlet method, which is unstable on
the three finest meshes. A rigorous error analysis showing temporal order two
independent of the spatial mesh will be presented in a separate paper.

Fig. 1. Runtimes of the ADI and
the Verlet method (including as-
sembling of the matrices). Compu-
tations are carried out on 14 uni-
form grids ranging from 8 to 34 ele-
ments per unit length with polyno-
mial degree k = 1 on the grid el-
ements. Time stepsize is τ = 0.01
and 200 steps are performed.
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