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Abstract

The notion of Electromagnetic Chirality, recently introduced in the Physics litera-
ture, is investigated in the framework of scattering of time-harmonic electromagnetic
waves by bounded scatterers. This type of chirality is defined as a property of the far
field operator. The relation of this novel notion of chirality to that of geometric chiral-
ity of the scatterer is explored. It is shown for several examples of scattering problems
that geometric achirality implies electromagnetic achirality. On the other hand, a chiral
material law, as for example given by the Drude-Born-Fedorov model, yields an elec-
tromagnetically chiral scatterer. Electromagnetic chirality also allows the definition of a
measure. Scatterers invisible to fields of one helicity turn out to be maximally chiral with
respect to this measure. For a certain class of electromagnetically chiral scatterers, we
provide numerical calculations of the measure of chirality through solutions of scattering
problems computed by a boundary element method.

1 Introduction

The fundamental laws governing the propagation of electromagnetic waves are Maxwell’s equa-
tions. To obtain a full modell, these equations have to be complemented by a set of constitutive
relations describing the interplay of the electromagnetic fields with the medium they propa-
gate through. Although most materials can be described by simple linear laws involving scalar
coefficients – the electric permittivity and the magnetic permeability – more complicated laws
may lead to a much more interesting interaction of fields and material. One particularly
interesting example is optical activity which includes effects due to anisotropy and chirality.

One possibility to obtain such material laws may be from a homogenization process with the
material being made up of a large number of tightly packed individual scatterers. The present
paper is concerned with the description of the chiral properties of one such individual object.
In a usual definition, a scatterer is called achiral if its response to fields of purely one helicity
may be obtained by fields of the opposite helicity incident upon an appropriately rotated and
translated mirror image of this object. Any scatterer without this property will be called
chiral. As this definition is a purely binary criterium, it offers no possibility of establishing an
ordering of chiral scatterers: Is there a way to consistently decide whether one object is more
or less chiral than another object.
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In the past, a number of attempts have been made to establish such an ordering based on
a purely geometric definition of chiral objects [4, 10, 21]. However, these attempts have led
to inconsistencies or undesired properties of the proposed measures of chirality. Recently, for
scattering of electromagnetic waves, in [9] a measure of chirality was proposed that is based on
the impact of the scatterer on the fields rather than on geometric properties. To distinguish
this measure and the corresponding notion of chirality from the established definition the term
electromagnetically chiral (em-chiral) was coined.

In this paper, we investigate this notion of em-chirality and its corresponding measure in a
specific mathematical setting describing the scattering of a time-harmonic electromagnetic
field by a bounded obstacle. The obstacle may be either penetrable or inpenetrable. The
incident field is assumed to be a Herglotz wave pair. Then, the mathematical object completely
describing the scattering response of the obstacle is the far field operator which has been well
studied in the theory of qualitative methods in inverse scattering theory (see the monographs
[6, 13] and the extensive literature cited therein). We prove that in this setting, the concept
of em-chirality extends that of geometric chirality in that geometrically achiral scatterers are
also em-achiral. In the measure of em-chirality introduced in [9], scatterers invisible to fields
of one helicity turn out to be exactly those that are maximally chiral provided reciprocity
holds. Given this measure, we are also able to give examples of em-chiral scatterers both by
an analytic and a numerical calculation.

Ultimately the results established in the present work are meant to serve as a basis of a
future study on constructing scatterers which are (close to) invisible to fields of one helicity
by shape optimization. As such scatterers are the maximizers of the appropriately normalized
measure of chirality, it is natural to use this measure as the basis of a corresponding objective
functional. As can be seen from our analytical construction, we have to expect this measure
to be non-smooth, in particular in the extremal points, and to have many local extrema. Also
note that all results derived hold for any single fixed frequency, but of course all quantities are
dependent upon this frequency. Future research will include efforts to extend our approach to
multi-frequency settings.

We will start in Section 2 with a rewiev of the concept of helicity of electromagnetic waves
and give a precise definition of electromagnetic chirality. In Section 3, we will investigate
the relation of this definition to the one purely relying on geometry. We give some examples
indicating that em-chirality is the more general concept in the sense that geometrically achiral
scatterers are also em-achiral. The notion of electromagnetic chirality gives rise to a measure of
chirality as first introduced in [9]. This measure will be defined in our context in Section 4 and
the relation of maximizing it in a certain sense to the invisibility of the corresponding scatterer
to fields of one helicity will be explored. In Section 5, we present a first concrete example of
an em-chiral scatterer by analytically solving the problem of scattering by a penetrable sphere
made of a material obeying a chiral material law. Finally, in Section 6, we will present an
example of an em-chiral perfectly conducting scatterer. The results presented were obtained
by numerically solving scattering problems using boundary element methods.
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2 Helicity and Electro-Magnetic Chirality

An optically active material will produce a response to an electromagnetic wave propagating
through it that depends on the circular polarization state of the wave, i.e. on its helicity.
In macroscopic models, such materials require bianisotropic or, in a more restrictive model,
chiral material laws [16]. On the other hand, chirality may be caused by the geometry of an
individual scatterer. We will discuss a recently proposed definition of chirality [9] for scattering
of electromagnetic waves that includes both aspects and moreover allows to measure how chiral
a given scatterer is.

Let us consider a relatively simple situation for the background medium surrounding the scat-
terer. Under appropriate normalizations, the spatial part of a time-harmonic electromagnetic
wave of circular frequency ω propagating in a homogeneous, isotropic material characterized
by the electric permittivity ε and the magnetic permeability µ is a solution to the Maxwell
system

curlE − i k H = 0 , curlH + i k E = 0 . (1)

Here, the wave number is given by k =
√
εµω. A Herglotz wave pair is a solution to this

system given by

V [A](x) =

(
E0[A]
H0[A]

)
(x) =

∫
S2

(
A(d)

d× A(d)

)
eikd·x ds(d) , (2)

where A is a vector-valued complex amplitude function from L2
t (S2), the space of square-

integrable tangential fields on the unit sphere. In [8] it is proved that in any compact set
B ⊂ R3, the Herglotz wave pairs form a dense sub-space of the space of solutions to the
Maxwell system (1) with respect to the H(curl)-norm. Hence, any possible weak solution to
(1) in B can be approximated arbitrarily well by Herglotz wave pairs.

Consider a plane wave

E(x) = A eikd·x , H(x) = (d× A) eikd·x, x ∈ R3 ,

with (real) direction of propagation d ∈ S2 and complex amplitude vector A ∈ C3, where
A · d = 0. Such a plane wave is said to be left or right circularly polarized if along a line
in the direction of propagation, the real part of the amplitude performs an anti-clockwise or
clockwise circular motion, respectively. This is exactly the case if after a step along the line
of propagation of a quarter of the wavelength λ = 2π/k, the electric field is equal to −/+ the
magnetic field at the original point,

∓(d× A)eikd·x = ∓H(x)
!

= E(x+ (λ/4) d) = A ei(kd·x+π/2) = iA eikd·x .

Hence, this corresponds to the relations id × A = ±A. Generalizing this notion to Herglotz
wave pairs we arive at the following definition.

Definition 2.1 A Herglotz wave pair V [A], A ∈ L2
t (S2), is called left (or right) circularly

polarized if A is an eigenfunction for the eigenvalue +1 (or −1, respectively) of the operator
C : L2

t (S2)→ L2
t (S2) where CA(d) = i d× A(d), d ∈ S2.
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Remark 2.2 The eigenspaces of C for the eigenvalues ±1 are given exactly by

V ± = {A± CA : A ∈ L2
t (S2)} .

This follows easily from C2A(d) = −d× (d× A(d)) = A(d). Additionally, from∫
S2
CA ·B ds =

∫
S2

i (d× A(d)) ·B(d) ds(d) =

∫
S2
−i (d×B(d)) · A(d) ds(d) =

∫
S2
A · CB ds

we see that C is self-adjoint. As

A =
1

2
(A+ CA) +

1

2
(A− CA)

we have that L2
t (S2) = V + ⊕ V − where these two subspaces are orthogonal and the orthogonal

projections P± : L2
t (S2)→ V ± are given by P± = (I ± C)/2, respectively.

A straightforward calculation shows that if A ∈ V ±, then A(−·), A ∈ V ∓, where the overline
signifies complex conjugation.

Adapting a notion from physics, we say that the Herglotz wave pair V [A] has helicity ±1 if
A ∈ V ±.

Remark 2.3 The decomposition of Herglotz wave pairs by helicity corresponds to the well
known Riemann-Silberstein linear combinations [22, §138]. Let B ⊆ R3 denote a bounded
open set and consider the two subspaces of Beltrami fields

W±(B) = {U ∈ H(curl, B) : curlU = ±k U} .

With the Riemann-Silberstein linear combinations E+ = E+iH ∈ W+(B) and E− = E−iH ∈
W−(B) of solutions of (1), we obtain the decomposition

E =
1

2

(
E+ + E−

)
,

which is orthogonal with respect to the inner product

〈u, v〉 =

∫
B

(
curlu · curl v + k2 u · v

)
dx on H(curl, B) .

With A ∈ V ± we observe that V [A] ∈ W±(B)×W±(B) for the corresponding Herglotz wave
pairs.

Let us consider the fairly general problem that an incident Herglotz wave pair V [A] is scattered
by some bounded scatterer D ⊆ R3. Thus, scattering by an inpenetrable scatterer where the
total field satisfies some boundary condition as well as scattering by a pentrable medium can
be considered. We only assume that the presence of D gives rise to some scattererd field
(Es, Hs) which is a solution to (1) in R3 \D and that it satisfies the Silver-Müller radiation
condition at infinity, i.e.

Es(x)−Hs(x)× x

|x|
Hs(x) + Es(x)× x

|x|

 = O

(
1

|x|2

)
, |x| → ∞ , (3)
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uniformly with respect to x/|x| ∈ S2. As consequence of (3), the scattered field has the
asymptotic representation(

Es

Hs

)
(x) =

eik|x|

4π |x|

[(
E∞

H∞

)
(x̂) + O

(
1

|x|

)]
, |x| → ∞ .

Here x̂ = x/|x| ∈ S2. The functions E∞ and H∞ are called the electric and magnetic far
field pattern, respectively. They are analytic tangential fields on S2 and also satisfy H∞(x̂) =
x̂×E∞(x̂). The far field patterns also uniquely define (Es, Hs) in R3 \D (see e.g. [7, Theorem
6.9]).

In inverse scattering problems, it is a common technique to characterize the scattering be-
haviour of D by its scattering response to plane waves. Denote by (E∞, H∞)(x̂, d, A), the
far field pattern of the scattered field observed in direction x̂ for an incident plane wave with
direction d ∈ S2 and amplitude A ∈ C3 where A · d = 0. Note that A 7→ (E∞, H∞)(·, d, A)
is linear. Then, the electric far field pattern of the scattered field due to an incident Herglotz
wave pair V [A] is FA where we have used the far field operator F : L2

t (S2)→ L2
t (S2) given by

FA(x̂) =

∫
S2
E∞(x̂, d, A(d)) ds(d) , x̂ ∈ S2 , A ∈ L2

t (S2) . (4)

As the far field patterns are analytic, F is a compact linear operator in L2
t (S2). As below, we

will formulate a number of specific problems for the magnetic field, we also note

FA(x̂) = −x̂×
∫
S2
H∞(x̂, d, A(d)) ds(d) , x̂ ∈ S2 , A ∈ L2

t (S2) . (5)

In the same way that we characterize the helicity of a Herglotz wave pair V [A] by A ∈ V ±,
we can characterize the helicity of the scattered fields through the fact that their far fields are
in V ±:

Theorem 2.4 The far field patterns E∞, H∞ are elements of V ± if and only if for any
bounded open set B such that B ⊆ R3 \D we have Es, Hs ∈ W±(B).

Proof: Let E∞ ∈ V +. Then E∞(x̂) = ix̂×E∞(x̂) = iH∞(x̂). As the map Es 7→ E∞ is linear
and injective [7, Theorem 6.9], we conclude

Es = iHs = i
1

ik
curlEs =

1

k
curlEs .

Thus Es ∈ W+(B) for any bounded open set B with B ⊆ R3 \D. The argument is analogous
for Hs ∈ V + and for Es, Hs ∈ V −.

Supose now Es, Hs ∈ W+(B) for any bounded open set B with B ⊆ R3 \D. In particular,
consider an open ball BR(0) of radius R such that D ⊂ BR(0) and let B denote an open
neighborhood of ∂BR(0). Then by a boundary integral representation of the far field (see [7,
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Theorem 6.8]),

ix̂× E∞(x̂) = iH∞(x̂) = −k x̂×
∫
|y|=R

(ŷ ×Hs(y)− [ŷ × Es(y)]× x̂) e−ikx̂·y ds(y)

= −x̂×
∫
|y|=R

(ŷ × curlHs(y)− [ŷ × curlEs(y)]× x̂) e−ikx̂·y ds(y)

= ik x̂×
∫
|y|=R

(ŷ × Es(y) + [ŷ ×Hs(y)]× x̂) e−ikx̂·y ds(y) = E∞(x̂) .

Thus E∞ ∈ V +. Again, the proof is analogous for H∞ and also for the case Es, Hs ∈ W−(B).

In order to identify corresponding contributions of different helicities in the far field opera-
tor, using the orthogonal projections defined in Remark 2.2, we can decompose F into four
operators,

F++ = P+FP+ , F+− = P+FP− , F−+ = P−FP+ , F−− = P−FP− , (6)

so that
F = F++ + F+− + F−+ + F−− .

In [9] it was proposed to define achirality of a scatterer by the fact that certain relations exist
between these four components of F , which involve again the operator C from Definition 2.1.

Definition 2.5 The scatterer D is called electromagnetically achiral (em-achiral) if
there exist unitary operators U (j) in L2

t (S2) with U (j)C = −CU (j), j = 1, . . . , 4, such that

F++ = U (1)F−−U (2) , F−+ = U (3)F+−U (4) .

If this is not the case, we call the scatterer D em-chiral.

3 Examples of EM-Achiral Scatterers

It is not a priori clear how Definition 2.5 of chirality relates to previous notions based on
handedness. Thus, in the following paragraphs we want to discuss some of these relations. We
will start by considering scattering problems for intuitively achiral objects and show that such
scatterers are also em-achiral. The arguments for different types of scatterers are essentially
similar and rely on the following lemma.

Lemma 3.1 Suppose that for a scattering problem with far field operator F there exists a
unitary operator D in L2

t (S2) such that

CD = −DC and FD = DF

Then the scatterer is em-achiral.
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Proof: The conditions of the lemma imply

F++ =
1

4
(I + C)F (I + C) =

1

4
(I + C)DF D−1 (I + C)

=
1

4
D (I − C)F (I − C)D−1 = DF−−D−1 ,

and likewise for F+− = DF−+D−1. Thus the scatterer is em-achiral.

Consider first the scattering of a Herglotz wave pair V [A] by a perfect conducting scatterer D,
where D is assumed to be a bounded Lipschitz domain in R3 with simply connected exterior.
In this case, the scattering problem can be written as an exterior boundary value problem for
the magnetic field,

curl curlH − k2H = 0 in R3 \D ,

(curlH)× ν = 0 on ∂D ,

Hs = H −H0[A] satisfies the Silver-Müller radiation condition

(with Es = −1/(ik) curlHs) .

Here ν denotes the outward drawn unit normal vector to ∂D.

Unique solvablity of this scattering problem can be shown in various function space settings
(see e.g. [14]). By the Stratton-Chu formulas, the solution has the representation

H(x) = H0[A](x) + curl

∫
∂D

ν(y)×H(y) Φ(x, y) ds(y) , x ∈ R3 \ ∂D ,

where by Φ we denote the Green’s function for the Helmholtz equation with wave number k
in free field conditions,

Φ(x, y) =
eik|x−y|

4π |x− y|
, x, y ∈ R3 , x 6= y .

Consequently, the far field pattern of the scattered field is given by

H∞(x̂) = ik x̂×
∫
∂D

ν(y)×H(y) e−ikx̂·y ds(y) , x̂ ∈ S2 . (7)

We will call a scatterer D geometrically achiral, if there exists x0 ∈ R3 and an orthogonal
matrix J ∈ R3×3 with det J = −1 such that D = x0 + JD. This means that D is invariant
under some reflection by a plane combined with translations and rotations. In the arguments
to follow, it is essential to know how the field changes under such a transformation. In order to
make implicit the dependence of the fields on the density of the Herglotz wave pair by writing
H[A] for the total field and H∞[A] for the far field pattern. Using the identity

Bx×By = det(B)B(x× y)

for any orthogonal matrix B, an elementary calculation shows that under the transformation
x = x0 + Jx̃, the Herglotz wave pair transforms by

H0[A](x) = H0[A](x0 + Jx̃) = −J H0 [DA] (x̃) ,
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with D : L2
t (S2)→ L2

t (S2) defined by

DA(d) = eikx0·Jd J>A(Jd) , d ∈ S2 , A ∈ L2
t (S2) .

Likewise, the total field transforms by

H[A](x) = −J H[DA](x̃) . (8)

It is easy to see, that D is unitary in L2
t (S2). Moreover, D anticommutes with C as can be

seen from

CDA(d) = i eikx0·Jd d× J>A(Jd) = det(J) eikx0·Jd J> (i Jd× A(Jd)) = det(J)DCA(d) ,

Thus we have

FDA(x̂) = −x̂×H∞[DA](x̂) , while DFA(x̂) = −eikx0·Jx̂J> (Jx̂×H∞[A](Jx̂)) . (9)

Theorem 3.2 If the perfect conductor D is geometrically achiral then it is also em-achiral.

Proof: Let D be geomtrically achiral. From (7) and substituting y = x0 + Jỹ in the integral,
we see

eikx0·Jx̂H∞[A](Jx̂) = ik eikx0·Jx̂ Jx̂×
∫
∂D

ν(y)×H[A](y) e−ikJx̂·y ds(y)

= ik Jx̂×
∫
∂D

ν(x0 + Jỹ)×H[A](x0 + Jỹ) e−ikJx̂·Jỹ ds(ỹ) .

An elementary calculation shows ν(x0 + Jỹ) = Jν(ỹ) and together with (8) we conclude

eikx0·Jx̂H∞[A](Jx̂) = ik Jx̂×
∫
∂D

Jν(ỹ)× JH[DA](ỹ) e−ikx̂·ỹ ds(ỹ)

=
−ik

det(J)2
J

[
x̂×

∫
∂D

ν(ỹ)×H[DA](ỹ) e−ikx̂·ỹ ds(ỹ)

]
= −JH∞[DA](x̂) .

Hence from (9),

DFA(x̂) = J> [Jx̂× JH∞[DA](x̂)] = det(J) x̂×H∞[DA](x̂) = FDA(x̂) .

Thus D commutes with F and the assertion follows from Lemma 3.1.

Next consider the scattering of a Herglotz wave pair V [A] by a penetrable scatterer D with
a non-magnetic and non-conductive isotropic linear material. In this case, the total magnetic
field H is seen to satisfy the equation

curl

(
1

εr
curlH

)
− k2H = 0 in D ,
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with some positive function εr with supp(1 − εr) = D. We will assume that εr ∈ C1,α(R3)
such that the problem is uniquely solvable [7, Chapter 9]. The scattering problem can be
equivalently formulated as a Lippmann-Schwinger type integro-differential equation

H(x) = H0[A](x) + curl

∫
D

[q(y) curlH(y)] Φ(x, y) dy , x ∈ D . (10)

Here q = 1 − 1/εr. For the derivation of (10) as well as the solvability theory in H(curl, D)
as well as in L2(D,C3) under suitable assumptions on εr see [7,12,15]. The magnetic far field
pattern can be seen to be

H∞(x̂) = ikx̂×
∫
D

q(y) curlH(y) e−ikx̂·y dy . (11)

In this case, we call the scatterer D = supp q geometrically achiral if there exists x0 ∈ R3 and
an orthogonal matrix J ∈ R3×3 with det J = −1 such that q(x) = q(x0 + Jx). In particular,
this implies D = x0 + JD, as for the perfect conductor case.

Theorem 3.3 If the penetrable scatterer D is geometrically achiral then it is also em-achiral.

Proof: Let x0 ∈ R3 and J ∈ R3×3 denote the point and orthogonal matrix, respectively, such
that q(x) = q(x0 + Jx). For x ∈ R3, let x̃ ∈ R3 be defined by x = x0 + Jx̃. As an additional
argument, we here require a formula for the curl operator under this transformation. From
(8) using Corollary 3.58 from [19], we obtain

curlxH[A](x) = − 1

det(J)
J curlx̃H[DA](x̃) .

Hence, from (8), (11) and the transform of the curl operation we observe using the substitution
y = x0 + Jỹ,

eikx0·Jx̂H∞[A](Jx̂) = ik eikx0·Jx̂ Jx̂×
∫
D

q(y) curlyH[A](y) e−ikJx̂·y dy

= ik Jx̂×
∫
D

q(ỹ) curlyH[A](x0 + Jỹ) e−ikJx̂·Jỹ dỹ

=
−ik

det(J)
Jx̂×

∫
D

q(ỹ) J curlỹH[DA](ỹ) e−ikJx̂·Jỹ dỹ

= ik J

[
x̂×

∫
D

q(ỹ) curlỹH[DA](ỹ) e−ikx̂·ỹ dỹ

]
= −JH∞[DA](x̂) ,

As in the proof of Theorem 3.2 we see that D and F commute, and the assertion again follows
from Lemma 3.1.

4 Measuring of EM-Chirality

The central tool in this section are singular systems for the operator F and its four helicity
components. We denote by (σj, Gj, Hj) a singular system for F , with the convention that the
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singular values form a decreasing sequence. Likewise, we denote by (σpqj , G
pq
j , H

pq
j ) a singular

system for Fpq, p, q ∈ {+,−}. In the case where any of these operators are finite dimensional,
to simplify arguments below, we extend the corresponding finite sequence of positive singular
values by a sequence of zeros.

As pointed out in [9], for an em-achiral scatterer, Definition 2.5 has important consequences
for the singular systems of the helicity components of F . Indeed,

F++G = U (1)F−−U (2)G =
∑
j

σ−−j 〈U (2)G,G−−j 〉 U (1)H−−j =
∑
j

σ−−j 〈G,U (2)∗G−−j 〉 U (1)H−−j

for all G ∈ L2
t (S2). As U (k), k = 1, 2, are unitary, we conclude that (σ−−j ,U (2)∗G−−j ,U (1)H−−j )

is a singular system for F++. Thus σ++
j = σ−−j , j ∈ N, and the analogous result σ+−

j = σ−+j
is obtained in the same way.

For a chiral scatterer it is hence plausible to characterize the deviation from achirality by
a measure of the difference of these sequences of singular value. The far field operator is
an integral operator with an analytic kernel, hence its singular values are known to decay
rapidly [18]. They in particular form sequences in the space `2 so that the following definition
is well posed.

Definition 4.1 For a scatterer characterized by a far field operator F , the measure of chi-
rality χ(F) is defined as

χ(F) =
(
‖(σ++

j )− (σ−−j )‖2`2 + ‖(σ+−
j )− (σ−+j )‖2`2

)1/2
.

As a measure of the responsiveness of the scatterer to any type of incident field, the authors
of [9] also introduce the total interaction cross section of the scatterer by

Cint(F) =
∑
j

σ2
j =

∑
j

‖FGj‖2 =
∑
j,k

|〈FGj, Hk〉|2 .

In mathematical terms, Cint is equal to the square of the Hilbert-Schmidt norm of the far field
operator.

In the following two lemmas, we rigorously prove two results from [9] in our specific setting.

Lemma 4.2 For any scatterer there holds χ(F)2 ≤ Cint(F). If the scatterer does not scatter
fields of one helicity, then χ(F)2 = Cint(F), i.e. then the scatterer has maximal measure of
chirality among all scatterers with the same total interaction cross section.

Proof: We begin by showing

Cint(F) =
∑

p,q∈{+,−}

∑
j

[σpqj ]2 . (12)

Consider first the case p = q = +. Denote by L the closed subspace of V + such that

V + = span{G++
j }+

(
kerF ∩ V +

)
+ L

10



and L is orthogonal to the other two spaces. Note that L ⊆ kerF++. Choose a complete
orthonormal system {G̃m} in L. Then

P+Gk =
∑
j

〈Gk, G
++
j 〉G++

j +
∑
m

〈Gk, G̃m〉 G̃m ,

and
〈P+Gk,P+Gl〉 =

∑
j

〈Gk, G
++
j 〉 〈Gl, G

++
j 〉+

∑
m

〈Gk, G̃m〉 〈Gl, G̃m〉 .

We write∑
j

[σ++
j ]2 =

∑
j

‖F++G++
j ‖2 +

∑
m

‖F++G̃m‖2 =
∑
j

‖P+FG++
j ‖2 +

∑
m

‖P+FG̃m‖2

and apply the singular value decomposition of F to obtain

∑
j

[σ++
j ]2 =

∑
k,l

σk σl

(∑
j

〈Gk, G
++
j 〉 〈Gl, G

++
j 〉+

∑
m

〈Gk, G̃m〉 〈Gl, G̃m〉

)
〈P+Hk,P+Hl〉

=
∑
k,l

σk σl 〈P+Gk,P+Gl〉 〈P+Hk,P+Hl〉 =
∑
k,l

σk σl 〈P+Gk,P+Gl〉 〈P+Hk, Hl〉 ,

where the last identity is just the characterization of an orthogonal projection. The same
calculation for F−+ gives∑

j

[σ−+j ]2 =
∑
k,l

σk σl 〈P+Gk,P+Gl〉 〈P−Hk, Hl〉 .

Adding both equations and using orthonormality of the functions Hk yields∑
j

(
[σ++
j ]2 + [σ−+j ]2

)
=
∑
k

σ2
k ‖P+Gk‖2 .

Repeating this argument for F+− and F−− , we arrive at (12).

From the definition of the measure of chirality, we now conclude

χ(F)2 = Cint(F)− 2
∑
j

(
σ++
j σ−−j + σ+−

j σ−+j
)
. (13)

Hence χ(F)2 ≤ Cint follows, with equality when the sum vanishes.

Suppose now without loss of generality that the scatterer does not scatter fields of helicity +.
This implies that F++ = 0 and F−+ = 0 and the corresponding singular values σ++

j and σ−+j ,
respectively, are also zero. Hence the sum vanishes in this case.

In general, the reverse conclusion is only true if the scatterer is reciprocal. Recall the notation
E∞(x̂, d, A) from the definition of the far field operator (4). A scatterer is said to satisfy the
reciprocity relation if the equation

A · E∞(x̂, ŷ, B) = B · E∞(−ŷ,−x̂, A) (14)
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holds for all x̂, ŷ ∈ S2, A, B ∈ C3 \ {0}, A · x̂ = 0, B · ŷ = 0. For the far field operator and
any A, B ∈ L2

t (S2), this implies

(FA,B)L2
t (S2)

=

∫
S2

∫
S2
E∞(x̂, ŷ, A(ŷ)) ·B(x̂) ds(ŷ) ds(x̂)

=

∫
S2

∫
S2
A(ŷ) · E∞(−ŷ,−x̂, B(x̂)) ds(ŷ) ds(x̂)

=

∫
S2

∫
S2
A(−ŷ) · E∞(ŷ, x̂, B(−x̂)) ds(x̂) ds(ŷ) =

(
FB(−·), A(−·)

)
L2
t (S2)

(15)

Lemma 4.3 If a scatterer satisfies the reciprocity relation and χ(F)2 = Cint(F) holds, then
the scatterer is invisible to incident fields of one helicity.

Proof: From (13), we see that
∑
j

(
σ++
j σ−−j + σ+−

j σ−+j
)

= 0. Recall that the sequences (σpqj )

are non-negative and monotonically decreasing. Consider just the first term in the sum: Either
σ++
1 = 0 or σ−−1 = 0 and either σ+−

1 = 0 or σ−+1 = 0. Then also the entire corresponding
sequences (σpqj ) vanish.

Let A ∈ V +, B ∈ V −. From Remark 2.2, we then see A(−·) ∈ V +, B(−·) ∈ V −. Then
P+A = A and by orthogonality of V + and V − we have (P+FA,B)L2

t (S2) = 0. Assume
F+− = 0. From (15),(
F−+A,B

)
L2
t (S2)

=
(
P−FP+A,B

)
L2
t (S2)

= (FA,B)L2
t (S2)

=
(
FB(−·), A(−·)

)
L2
t (S2)

=
(
F+−B(−·), A(−·)

)
L2
t (S2)

= 0 .

As A, B where chosen arbitrarily, we conclude F−+ = 0. The argument works exactly the
same for the other direction, thus F+− = 0 = F−+. As either F++ = 0 or F−− = 0, we
conclude that the scatterer is invisible to fields of one helicity.

The reciprocity relation is satisfied for the two examples considered in Theorems 3.2 and
3.3 [20]. Even much more general materials such as bianisotropic media are reciprocial under
certain additional conditions; an example, where the property does not hold, is an anistropic
plasma (see [16, Section 5.5]).

5 EM-Chirality via Material Laws

Examples for em-chiral scatterers with maximal measure of em-chirality can be constructed
using media with chiral material laws. Such laws are given by the Drude-Born-Fedorov
model [17, 23]. This model has also been used in [2, 3] when studying the formal math-
ematical solution of a scattering problem for a homogeneous chiral medium by boundary
integral equations and in [11] in an analysis of the application of the factorization method to
a chiral scattering problem. The material inside a bounded open domain Ω ⊆ R3 is charac-
terized by an electric permittivity εD > 0, a magnetic permeability µD > 0 and a chirality
β ∈

(
−1/(

√
εr µr k), 1/(

√
εr µr k)

)
, where we have set εr = εD/ε0, µr = µD/µ0. Keeping

12



in mind our normalization of the electromagnetic field, the Drude-Born-Fedorov constitutive
relations are of the form

1
√
ε0
D = εr (E + β curlE) ,

1
√
µ0

B = µr (H + β curlH) .

In Ω, the electromagnetic field satisfies the equations

curlE − ik µr (H + β curlH) = 0 , curlH + ik εr(E + β curlE) = 0 . (16)

At the interface ∂Ω the tangential components of the electric and the magnetic field are
continuous,

[ν × E] = 0 , [ν ×H] = 0 on ∂Ω , (17)

where ν denotes the outward directed unit normal vector to ∂Ω and by [.] we denote the jump
across ∂Ω. The additional assumption µr = εr ensures duality, i.e. preservation of helicity, at
the interface.

Recalling Remark 2.3, we consider the Riemann-Silberstein linear combinations

E± = E ± iH

instead of the fields E, H. One then finds [2] that these fields both satisfy equations

curl curlE± − k2±E± = 0 in R3 ,

with

k± =

 k in R3 \ Ω ,√
εr µr k

1∓√εr µr k β
in Ω .

Note that when εr = µr and k = k+ or k = k−, i.e. when

β = β+
crit = −

√
εr µr − 1
√
εr µr k

or β = β−crit = +

√
εr µr − 1
√
εr µr k

, (18)

the equation for the Beltrami field of the corresponding helicity inside Ω is the same as the
equation for the incident field outside Ω, and the boundary conditions are transparent, so that
Ω is invisible to fields of this helicity. We expect a maximal measure of em-chirality relative
to the total interaction cross section in this case.

For the case where Ω is a ball, the fields E± and consequently the far field operator can be
computed analytically using expansions in vector spherical harmonics. Such calculations have
been carried out by S. Heumann [11, Chapter IV]. Given the vector spherical harmonics

Um
n (x̂) =

1√
n (n+ 1)

GradS2 Y
m
n (x̂) , V m

n (x̂) = x̂× Um
n (x̂) , x̂ ∈ S2 , (19)

for n = 1, 2, 3, . . ., m = −n, . . . n, one defines the linear combinations

Amn = Um
n + iV m

n , Bm
n = Um

n − iV m
n . (20)
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Figure 1: Plot of χ(Ω)2/Cint against β for k =
√

10, εr = µr = 1.5. The inset is an enlarged
view of the plot around β−crit ≈ 0.1054.

The sets {Amn } and {Bm
n } then form complete orthogonal systems in V + and V −, respectively.

Expanding a tangential field A ∈ L2
t (S2) as

A =
∞∑
n=1

n∑
m=−n

(amn A
m
n + bmn B

m
n ) ,

for the unit ball Ω = {|x| = 1}, Heumann finds the expression

FA(x̂) =
(4π)2 i

k

∞∑
n=1

n∑
m=−n

(
γn(κ+) amn A

m
n + γn(κ−) bmn B

m
n

)
for the far field operator, with

γn(κ) =
Re dn(κ)

dn(κ)
, dn(κ) =

(
1

κ
− 1

k

)
jn(κ)h(1)n (k) + h(1)n (k) j′n(κ)− jn(κ)h(1)n

′
(k) .

Here jn denotes the spherical Bessel functions of order n and h
(1)
n the spherical Hankel func-

tions of order n and of the first kind. Thus the chiral ball as a scatterer preserves helicity
and the eigenvalues of its far field operator are (16π2i/k) γn(κ+) with eigenfunctions Amn and
(16π2i/k) γn(κ−) with eigenfunctions Bm

n , respectively. Its measure of em-chirality is

χ(Ω) =
16π2

k

(
∞∑
n=1

(2n+ 1)
[
|γn(κ+)| − |γn(κ−)|

]2)1/2

.

We plot χ(Ω)2/Cint as a function of β in Figure 1. As expected, this quantity attains a
maximum value of 1 exactly at β = β+

crit. It appears that in a number of points, but particularly
in the maximal point β+

crit, the function χ(Ω)2/Cint is not differentiable. Indeed, in the present
example γn(κ±) is a smooth function of β, but χ(Ω) depends on |γn(κ±)|. Whenever γn(κ±)
has a zero, which is true in particular in β+

crit, we cannot in general expect differentiability.
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Even though the eigenvalues of a chirality component of the far field operator may be smooth
functions of some parameter (β in the example above), a singular values will not necessarily
be differentiable in the parameter value where the corresponding eigenvalue becomes zero.
This has to be taken into account in algorithms where χ(Ω)2/Cint is used as the basis of
the objective functional in a shape optimization procedure to develop maximally em-chiral
scatterers.

6 EM-Chirality for a Perfect Conducting Geometrically

Chiral Scatterer

Analytic calculations of χ(D) as presented in the previous section are only possible in the case
of simple geometries where exact solutions to Maxwell’s equations are available. For more
complex geometries, appropriate numerical methods have to be employed for the calculation
of a discretization of F and its singular values are approximated by the singular values of this
discretization.

In this section, we will consider a perfectly conducting scatterer and present calculations
carried out with the boundary element package BEM++ (http://www.bempp.org, [24, 25]).
For a bounded scatterer D ⊆ R3 and after normalization, the boundary value problem reads
as

curlE − ikH = 0 in R3 \D ,

curlH + ikE = 0 in R3 \D ,

ν × E = 0 on ∂D .

The fields (E,H) decompose into (E,H) = (Ei + Es, H i +Hs), where (Ei, H i) are incoming
waves, i.e. solutions of the first two equations and (Es, Hs) the scattered fields which satisfy
the Silver-Müller radiation condition. Following the notation of Buffa/Hiptmair [5], we
have Es = −ΨSLλ with the Neumann or magnetic trace λ = γNE

s and the electric single
layer potential

ΨSLµ(x) = k

∫
∂D

Φ(x, y)µ(y) ds(y) +
1

k
gradx

∫
∂D

Φ(x, y) Div µ(y) ds(y)

for µ ∈ H− 1
2 (Div, ∂D). This leads to the electric field integral equation (EFIE)

Sλ = −γtEi = −ν × Ei,

where S is the associated boundary operator.

We will briefly outline, how we represent the far field operator in these numerical calculations.
Define

Mm
n (x) = −jn(k|x|)V m

n (x̂) , x ∈ R3 , n = 1, 2, 3, . . . , m = −n, ..n .

where x̂ = x/|x|, jn denotes the spherical Bessel function of order n and V m
n was introduced

in (19). Expanding a plane wave with polarization vector p ∈ C3 in terms of these functions
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and their curls,

p eikd·x =
∞∑
n=1

n∑
m=−n

[
αmn M

m
n (x) + βmn

1

ik
curlMm

n (x)

]
,

orthogonality of the vector spherical harmonics gives

αmn = −
(p eikrd·x̂, V m

n )L2(S2)

jn(kr)
, βmn = −

i kr (p eikrd·x̂, Um
n )L2(S2)

(r jn(kr))′
.

The scalar products in the enumerators are Herglotz wave functions. Thus, letting r → ∞,
from the asymptotic behaviour of these functions (see e.g. [1]), we obtain

p eikd·x = −4π
∞∑
n=1

in
n∑

m=−n

[
(p · V −mn (d))Mm

n (x)− (p · U−mn (d))
1

ik
curlMm

n (x)

]
.

Inserting this representation in (2), one derives a corresponding expansion for the Herglotz
wave pairs. Expanding a tangential field on the unit sphere in vector spherical harmonics

A =
∞∑
n=1

n∑
m=−n

(umn U
m
n + vmn V

m
n ) ,

we obtain

Ei(x) = E0[A](x) = −4π
∞∑
n=1

in
n∑

m=−n

[
vmn M

m
n (x)− umn

1

ik
curlMm

n (x)

]
.

We use this representation to evaluate the incident field on the boundary of the obstacle.
Likewise expanding the far field pattern E∞ with respect to Um

n , V m
n leads to a representation

of the far field operator with respect to this basis. Recalling the definition of Amn , Bm
n in

(20), we easily obtain corresponding representations of the four component operators Fpq, p,
q ∈ {+,−}. For the numerical approximation, in all these representations, the series over n
are cut off at N ∈ N.

As the scatterer, we consider 4 perfectly conducting spheres with different diameters located
on the corner points of a tetrahedron. With this type of object, it is possible to obtain a good
approximation to the exact solution by a sum of expansions around the center of each sphere.
It is thus well suited as a benchmark problem for the boundary element code. We fix three
of the radii at r1 = 1/2, r2 = 1/

√
2 and r3 = 2 while varying r4 in the interval [r1, r2]. A

typical geometric configuration is shown in Figure 2 (a). All calculations where carried out
at k =

√
10. When r4 coincides with r1 or r2, the scatterer is geometrically achiral and thus

em-achiral by Theorem 3.2, so we expect the measure of em-chirality to be zero in these cases.

Calculations were carried out for N = 5, i.e. the far field operator was approximated by a
matrix in C70×70. The boundary element meshes were generated with a maxmimum mesh
size of h = 0.1. The exact number of unknowns for each boundary integral equation varies
between 10 080 for r4 = r1 and 11 517 for r4 = r2.

Indeed, our numerical computations meet the expectation that the measure of em-chirality is
much smaller when the scatterer is geometrically achiral as in the cases when is is geometrically
chiral, as shown in Figure 2 (b). Overall, the measure of em-chirality is relative small, as each
combination of three spheres forms an achiral scatterer with a stronger scattering response
than any multiple scattering involving the entire ensemble of all four spheres.

16



(a)

0.45 0.5 0.55 0.6 0.65 0.7 0.75

r
4

10 -10

10 -5

10 0

@
2
 / 

C
in

t

r1 r2

(b)

Figure 2: Scattering by four perfectly conducting spheres. (a) Typical geometric configuration.
(b) Plot of χ(Ω)2/Cint against the radius r4 of the third largest (green) ball.
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