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loannis Anapolitanos, Michael Hott *
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In this article, we investigate the asymptotic behavior of the ground state energy
of the Frohlich Hamiltonian for a Fermionic multipolaron in the so-called strong
coupling limit. We prove that it is given to leading order by the ground state
energy of the Pekar-Tomasevich functional with Fermionic statistics, which is a
much simpler model. Our main theorem is new because none of the previous results
on the strong coupling limit have taken into account the Fermionic statistics and the
spin of the electrons. A binding result for Fréhlich multipolarons is a corollary of
our main theorem combined with the binding result for multipolarons in the Pekar-
Tomasevich model by [AGI14]. Our analysis strongly relies on [Well5] which in turn
used and generalized methods developed in [LT97], [FLST11] and [GW13|. In order
to take the Fermionic statistics into account, we employ a localization method given
in [LLO5).

1. Introduction

Consider a conducting electron traveling through a polar crystal such as NaF. We assume
that the ions in the crystal are not rigidly fixed. Note that we use the expression "ion" in a
more general meaning, where we not only include the case of metals but also the case of covalent
semi-conductors. As the electron moves along the crystal, it causes distortions of the crystal
lattice in a neighborhood, moving together with the electron. The ensemble consisting of the
traveling electron and the induced distortions of the lattice is called a polaron. If we instead
consider two or more electrons in a polar crystal, we analogously call the resulting ensemble of
electrons and lattice distortions a bipolaron or a multipolaron, respectively. The (quantized)
lattice distortions are described by phonons. Energetically it is more favorable if the electrons
deform the lattice in a small region, hence they tend to stay close together. Therefore, an
attractive force mediated by the lattice distortions operates between the electrons which is
counteracted by their Coulomb repulsion. As a consequence, even though electrons always

*Dept. of Math., Karlsruhe Institute of Technology, Karlsruhe, Germany.
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repel each other, polarons may attract each other. This phenomenon attracted the attention
of many physicists because it was believed for a long time that this could cause the formation
of Cooper pairs, which in turn causes superconductivity.

In order to understand the question of whether polarons attract each other or not, one
needs an insight into the behavior of the ground state energies of polarons and multipolarons.
A well known and established model describing these is the so-called Frohlich Hamiltonian
derived by Herbert Frohlich in 1954 (JEx654]). The Frohlich Hamiltonian is informally given by

N
HMN = Z(Dimj Dag, + V(x;) + voad(x;) + Hpp + UVe(z1, 22, . .., TN),
=1
where N € N and o > 0. In here, Dy,, := —iV,, + A(z;) denotes the canonical momentum

operator for a given external vector potential A. V represents an external electric potential, U
indicates the rescaled Coulomb coupling strength between electrons and

1
Ve(xy, xg, .. xN) = E [
|z, — x;

Moreover, y/a denotes the coupling constant between an electron and the phonon field. The
interaction term is given by \/&Zle P(x;) with

dk

. 1 eik:p CLT efikm
o) = <= | (albe™ + (ke ) T

T Vor

and the energy of the phonon field is given by
Hpy, = J a'(k)a(k)dk.
R3

a(k) denotes the annihilation operator for a phonon with momentum & and we consider af(k)
(informally) as its adjoint, both seen as acting as quadratic forms on an appropriate dense
subspace of the physical space

HNIZ 8N®.F (11)

The physical space of the phonons is the bosonic Fock space F over L2(R?) and the physical
space £y of the electrons is

En = /N\LQ(RE”;@). (1.2)

J=1

The last definition reflects the fact that electrons are spin-1/2 Fermions. However, we neglect
the coupling of the spin to the magnetic field B = V x A. We endow Hy = L2(R*N; C2")@F =

(—D?il L2(R3Y; F) with the following inner product:

S = 2| B @) do

An appropriate choice of a form domain of H™:® for which there exists an associated closable



quadratic form, see Theorem is

On = Eno® Fo, (1.3)
where
Fo = {(nn)neNe"r| vneNnnecgj(Rim) (1 4)
Ing e N:n, =0Vn = ng} .
and
N
g]\[’() — /\CSO(R37C2) (15)
i=1

Note that up to now we understand H™® only as an informal notation for a (self-adjoint)
Hamiltonian for which we will show its existence. So far, the notation for the Frohlich Hamilto-
nian does not define an operator—on a larger space than the null-space—because al( x(iv) on )1 &

-----

F for féiv) N(k) = Zjvzl ‘i}Q—i'Tk]' unless 7 = 0, due to the fact that féiv) en ¢ L2 If ® € Qpn and

----------

x = (x1,...,2y), then we define

(@ FON@) @) = [ 1) (ViSO o O, ) (1.6)

eN

in the sense of a Bochner integral in F.

We prove the existence of the Frohlich Hamiltonian with quadratic form methods. The proof
gives a form core with nice properties. This is important in several steps of the proof of the
main theorem. More precisely, we will prove that the quadratic form ¢V : Q% — C, defined
in Equation below, is indeed associated with a self-adjoint operator on H which is called
the Frohlich Hamiltonian. As it turns out, ¢¥® is bounded from below, and therefore so is
H®-2) This means that the ground state energy of the actual Frohlich Hamiltonian exists.

An advantage of this approach is that, by Remark Proposition and Theorem
below, minimizing ¥ — (U, H™)TW) on D(HWN) A Sy, will be equivalent to minimizing
U N (U W) on Qn NSy, where Sx denotes the unit sphere in a normed space (X, || -||).
More precisely, the ground state energy E(N) (A, V, U) of HN*) satisfies for appropriate choices
of Aand V]

ENA VD) inf (@,HNVDY = inf ¢V(D, B). (1.7)
deD(H W)Y, (\I\);%Ni
l|®[|=1 =

The Pekar-Tomasevich functional PN (A, V,U,-) is given for 1) € Eno by
PO V.U E it (M@0 @), (L8)
Ui 0,
[Inl|=1

We then minimize with respect to 1 € Ex9 NS¢, and denote the infimum by

O(Naa)(A,V,U) = wi?f P(N’O‘)(AWU,W- (1.9)
€CN,0,

lell=1

! Unless it should remain unclear to the reader, we will neither specify inner products nor norms.
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We obviously have
EWN < o), (1.10)

A now standard calculation, originally presented in [Pekb4], gives an explicit expression for the
Pekar-Tomasevich functional. For convenience of the reader we outline the calculation. We
have for [|n||z = [[¥[| A3 12@scsy = 1

¢ @n, v @n) = Z<DA 2y D g, ) + Z<w7 (@) + UG, Vopy

7=1

[ (@m0t + Y0 (0T +  WF0) )

Here p,, denotes the Fourier transform of the electron density defined by

ZJ IL'l,...,Ij_1,$,$j+1,...,J]N)|2d171...d/l\'j...d$N7 (112)

3(N— 1)

where |-| always denotes the Euclidean norm in the respective space. For example, |[¢)(x1, ..., xy)|
denotes the Euclidean norm of ¢(xy,...,zy) in C2". By completing the square, we arrive at

¢ @n, Y @n) = Z<DA w0 Daa )+ Z<w7 ()0 + U, Vo)

7=1

+ f I (a(k) + %) n|]2dk — % j #M;Pdk.

In order to minimize this expression, we choose a sequence in JFy approximating a coherent
state such that the second to last term vanishes. By applying Plancherel and the fact that the

inverse Fourier transform of | kP satisfies

. |
W) = (2n) SJWek I = 20 (1.14)

we then obtain

P(N’a) (A, ‘/, U, w Z<DA x]w;DA mjw> + Z<w7 iL’] w> + U<'QD,VC¢>

j=1

_afpw(flf)f%(y) q
|z —y|
The goal is to show that the Pekar-Tomasevich functional, which is a simpler model than

the full Frohlich Hamiltonian, yields the behavior of the ground state energy of the Frohlich

Hamiltonian up to a relative error which vanishes in the strong coupling limit o — c0. In view

of inequality an appropriate lower bound for the ground state energy of the Frohlich

Hamiltonian is sufficient. Such a lower bound is provided in Theorem below.

(,y).

Assumptions. As in [Well5] we assume the following.

(1) Apel? (R%R)and VelLl .



(11) V : R® - R is infinitesimally —A-form-bounded, i.e., for any & > 0 there is C. € R such
that for any ¢ € C*(R?; C?) we have

oVl < ellVoll” + Cellgl|*. (1.16)

(111) A,V are such that

CUI(A,V,v) + C (A, V,v) = O (A V), Vv 20, YmneN.  (L17)

Note that the space of all infinitesimally —A-form-bounded potentials V : R®> — R is a real
vector space. Now we will give an example of external fields A and V' for which assumption
(111) is satisfied.

Example. In addition to assumptions (1) and (11), assume that we have a periodic electric
potential and a periodic magnetic field. More precisely, suppose that there exist f € H?(R3) and
w € R3/{0} such that f(x +w) = f(z), Az + w) = A(z) + Vf(z) and V(x + w) = V(z) for
all x € R®. Then assumption (111) is fulfilled.

Proof. It is known that C™Y (A, V,v) exists for all v > 0,n € N when A,V fullfill assumptions
(1) and (11). We reprove that at the end of Section [2] but we assume it for now and we proceed
with the proof of ([1.17] - The argument is also standard but we repeat it for Convemence of the
reader. We choose ¢; € /\ C*(R3; C?) to be approximate minimizers of P"1 with error £/3
for [ € {m;n}. Define for any keN

OIN() = by + kw, ... 2y + kw)e* X @) e = (2 2,,)T € RO

Note that
PID(A VU, ¢®) = POD(AV, U, d). (1.18)

We choose £ so large that py, and Py have disjoint supports. Then we have

P s®) gy = Pyt Poy

o\ Adnll
which in turn yields
o A & ;
prrml(A, VU, m) = P (A VU 60 ® ¢,). (1.19)
m A n

Here P41 denotes the Pekar-Tomasevich functional extended to & CP (R C?). By
enlarging k € N such that

m m+n
g

i=1j=m+1 Li
and employing Equations (1.18) and (L.19)), we arrive at

P(ern,l)(A V.U, ﬁ) C(m,l)(A7 v, U) + C(”’l)(A, V, U) + e
m /\ n



We are now ready to formulate the main result of the article.

1.1 Theorem. Suppose the assumptions (1), (11) and (111) hold. Let A,(z) := aA(az), and
Vo(z) := o®V (azx). Then

(i) There exists c(A, V) € R such that for any N €N, v =2, and a > 0

EN (A, Vo, av) = o*’CID(A,V,v) — c(A, V)P N4,

(ii) If, in addition, A, € L3 _(R®) and V € L>(R3), we find for Ne N and v = 2

lim a 2EW(A,V,av) = CND(0,0,v).

a—0

1.2 Remark. The importance of Theorem[1.1] lies in the fact that the Pekar- Tomasevich func-
tional is a much simpler model which is defined only on the electronic space /\j\[:1 L2(R3; C?).
Therefore, conclusions for the simpler Pekar-Tomasevich functional can be used for conclusions
for the more fundamental Fréhlich Hamiltonian. As an example for the last claim, we have
the following application in Section [f): Combining a previous binding result in the Fermionic
Pekar-Tomasevich model, i.e., Theorem 1.1 in [AG1j)] with our Theorem a binding result
for Fermionic Frohlich polarons follows.

1.3 Remark. Note that a simple rescaling argument shows that
CWN (A, Vo, av) = o>)CTV(AV,v).

Therefore the leading term in part (i) of Theorem 18 the ground state energy of the Pekar-
Tomasevich functional with the same fields and coupling constant as the Fréhlich Hamiltonian.

Several previous results exist for the strong coupling limit. In 1980, Adamowski, Gerlach
and Leschke sketched a proof of the convergence| a=2E(1)(0,0) — C1D(0,0) in [AGLS0
with the help of large deviation theory of Brownian motion. In 1983, Donsker and Varadhan
provided a complete and rigorous proof. However, information on the rate of convergence
was not provided. In 1997, Lieb and Thomas found in |[LT97| a simpler proof which also
gives rates of convergence. In 2013 Wellig and Griesemer (JGW13|) extended this result by
including external electric and magnetic fields. In the same year the multipolaron case with
no external fields was studied by the first author and Landon in [AL13]. They combined the
methods of Lieb and Thomas and also applied Feynman-Kac formulas, which were applied in
[FLSTT11] to show that bipolarons do not form a bound state above a threshold of v. A few
months later Wellig extended in [Well5] this result by including external fields. Wellig followed
ILT97] as well, and he generalized a localization method of the phonons, originally devepoled
in [FLSTT1I] for bipolarons. He further used arguments in [GW13|, which were applied for the
case of a polaron. Neither in [ALI3| nor in [Well5]| was the Fermionic statistics taken into
account. Ghanta ([Ghal5]) recently investigated the one-dimensional polaron in the strong
coupling limit. He proved, for N = 1, A = 0 and some assumptions on V, convergence of
approximate minimizers of the Frohlich Hamiltonian to the (unique) minimizer of the Pekar-
Tomasevich functional in a certain sense. In this work, we follow [Well5| quite closely but we
take care of the Fermionic statistics. To this end, we employ a localization method developed
in [LLO5].

2Note that when N = 1 we trivially have no Coulomb repulsion term and therefore v is irrelevant. For that
reason the third input of E4®) and ¢ is omitted.
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The paper is organized as follows: In Section [2| we show that the Frohlich Hamiltonian
may be derived as a closable quadratic form defined on Qy. In Section [3| we prove Theorem
[L.1] In Section [4 we present a corollary of Theorem [I.1]and Theorem 1.1 in [AGI4] which shows
that Fermionic Frohlich polarons can bind.

Acknowledgments. The first author (TA) is grateful to Marcel Griesemer for suggesting
to work on the strong coupling limit of polarons, to Jeremy Faupin for discussions on non-
relativistic quantum electrodynamics that turned out to be inspiring for this work and to
Marcel Griesemer, Robert Seiringer, David Wellig, Benjamin Landon and Andreas Wiinsch for
numerous discussions on polarons and the strong coupling limit. Both authors acknowledge
gratefully Dirk Hundertmark and Semjon Vugalter for discussions and references which helped
in completing the arguments of the proofs. We gratefully acknowledge financial support by the
Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.

2. Form core of the Frohlich Hamiltonian

2.1. Preparations

As it turns out, it is very difficult to describe the domain of self-adjointness even for the bare
one-particle Frohlich Hamiltonian, i.e., without external fields. This has recently been done in
I[GW15]. In order to avoid this problem and since it is sufficient for our purposes to only have
a form core for the above mentioned reasons, we will derive the Frohlich Hamiltonian from a
closable quadratic form defined on Oy, see Theorem below.

The main idea behind this construction of the Hamiltonian is the duality between a positive
self-adjoint operator A and a positive closed quadratic form (both defined on a same Hilbert
space). For convenience of the reader we repeat some knowledge on quadratic forms.

2.1 Definition. Let q : Q* — C be a densely defined and semi-bounded quadratic form on a
Hilbert space with q(¢, ¢) = —b||¢||* for any ¢ € Q and some b= 0. We define a scalar product

on Q) by
Crog = L+ 0)E) +ql0), (2.1)
where (-,-) denotes the inner product of the ambient Hilbert space.
(1) We call q closed iff Q endowed with {-,-), is complete.

(11) We call q closable iff it has a closed extension on the ambient Hilbert space. We then
denote the closure by G and the domain of the closure by Q(q).

(11i) Let q be closed and D < Q. We say that D is a form core of q zﬁ% =q.

2.2 Definition. Let q : Q* — C be a closed quadratic form and A be a self-adjoint operator
defined on the same Hilbert space. We say that q is associated with A iff

D(A) = Q,
(0, AY) = q(¢,v) Vo€ Q,¢eD(A).
More generally, we say that a closable quadratic form is associated with a self-adjoint operator

A iff its closure is associated with A. Conversely, we say that A s associated with a closable
quadratic form q if q is associated with A.



2.3 Remark. Employing a simple argument given in [BS87], it follows that if a closable
quadratic form q is associated with A, then A is semi-bounded by some constant iff q is semi-
bounded by the same constant.

The following result associates certain quadratic forms with self-adjoint operators.

2.4 Proposition. Let q be a closed semi-bounded symmetric quadratic form on a Hilbert space.
Then there is a unique self-adjoint operator A associated with q. In particular, A has the same
lower bound as q.

This is a corollary to Theorem 2 in [BS87], Chapter 10. For the opposite direction of the
duality, we state Theorem 1 in [BS87|, Chapter 10.

2.5 Proposition. Given a positive definite self-adjoint operator A there exists a unique closed
quadratic form q associated with A, and q is defined by

9(6,0) = (A3¢,A3) Vo, v € Q(q) = D(A?).

2.6 Remark. We say that a semi-bounded self-adjoint operator A has form core D iff the closed
quadratic form q associated with A has form core D.

The next theorem is the main theorem of this section.

2.7 Theorem. Under the assumptions (1), (11) of Theorem the quadratic form q™N*) .
Q3% — C defined by

N N
gV (D,T) = Z<DA7%@’DAM\P> + Z<@,V(xj)\ll>

J=1 J=1

+ (D, (UVg + Hypp) V) + 2/aR(D, (a( fN)T)

(2.2)

is closable and semi-bounded from below. In particular, the closure of ¢ is associated with
a unique self-adjoint operator HN®) . Moreover, EN® (A, V,U) > —oo.

To prove this theorem we use the following two auxiliary lemmas.

2.8 Lemma (KLMN Theorem for quadratic forms). Let ¢ : D* — C be a closable positive
quadratic form on a Hilbert space and B : D> — C be a symmetric quadratic form. Assume
there exist a < 1 and b e R with

18(¢,9)| < aq(¢, ¢) + bl 6] (2.3)

for any ¢ € D. Then
v:D* = C, ($,0) = q(6,9) + 5o, )
is closable and semi-bounded from below by —b and Q(q) = Q(7).

The proof is analogous to the proof of the actual KLMN Theorem given in [RS75|, Theorem
X.17.

Whereas the KLMN Theorem is a powerful tool to "add" quadratic forms acting on the same
space, we will use the following Lemma to add quadratic forms acting on different spaces.



2.9 Lemma. Let q; : Df — C, j € {1;2}, be two positive closable quadratic forms on Hilbert
spaces h;. Then the quadratic form g1 + qz : (D1 ® Dq)* — C determined by

(g1 + @2) (D1 ® P2, 11 @ 1Y) 1= q1 (D1 ® P2, Y1 @ V2) + Ga(P1 ® P2, Y1 R 1)

is closable and positive, where we identify q; with its obvious extension to Dy @ D.

For a proof we refer to appendix [A]

2.2. Structure of the proof of Theorem

We prove that there is a closable quadratic form ¢ on L2(R3; C2")®F including all above
indicated interactions before we include the Fermionic statistics. Recall A; € L} (R?) and let
A= (Ay, Ay, A3)T. We will start by proving that

N 2 N
ngg) : <® CSO(RS’ CQ)) - C> (907 w) = Z<DA,xj90>DA,:cj¢> (24)
j=1

J=1

is closable and that the domain of the closure is the magnetic Sobolev space H (R3Y;C2")
which will be specified below. Next we will employ the KLMN Theorem to add an infinitesi-
mally ijzl(—ij)—form—bounded external electric potential Zjvzl V(z;), see inequality
respectively Remark below, and the Coulomb repulsion UV between the electrons. Due

to Hardy’s inequality

1< (2.5)

|2
in three dimensions, UV¢ is infinitesimally ij:l(—ij)—form—bounded. We then obtain a clos-

able form g™ : ( ;\/:1 C*(R3;C?))? — C that includes all electronic interactions.

Next we will use that Fy, defined in Equation (1.4)), is a form-core of the phonon occupation
number operator H,, in order to define a closable form GINO) = (jéN) + gpn : Q% — C as in
Lemma [2.9] In here, g, is the quadratic form associated with H,y,, defined in Equation (2.7)
below, and Qp is analogously defined to Qp replacing /\jvz1 in Equation (1.5 respectively

by ®;V:1 In general, the notation with tilde (™) stresses the fact that we are not taking
care of the Fermionic statistics, yet. The main advantage of using the language of quadratic
forms relies on the fact that the KLMN Theorem only preserves form cores and not the domain
of essential self-adjointness. Again, this is sufficient for our purposes.

Finally, Lemma [2.15| tells us that including the electron-phonon interaction \/&Z;.V:l o(xj)
Q?V — C still yields a closable quadratic form gV® due to the KLMN Theorem. We are then

ready to prove Theorem by showing that the restriction of ¢™¥% to Qu, which is equal to
¢MV) s still a closable quadratic form.




2.3. Actual proof of Theorem

From now on, we will always assume that assumptions (I) and (I1) of Theorem [L.1| hold. For
d,k e N and a; € L} (R?), 1 < j < k, we define the space

loc

H(R%CF) = {® e L* (R CY)|((—10; + a;(-))®) € L*(R; C¥)
V1< j<d}.

We are especially interested in the case d = 3N, k = 2" and a = A with

A(xy, ... o) = (A(21), Ao(z1), As(x1), ..., Ai(zn), As(zy), As(zy))T.

Instead of Lemma [2.9] we will use another approach to establish a closable quadratic form
inducing the multi-particle magnetic Laplacian. By this we mean the self-adjoint operator
assigned to Zjvzl DL’IJ D, in the informal expression of the Frohlich Hamiltonian. The ad-

Vanta%e of this approach is that it gives us an explicit description of the domain of the closure

of (_7;0 .

2.10 Proposition. qNSX) defined in (2.4) is closable and positive and the domain of its closure

is H) (R3N; C2Y).

Proof. First of all, we refer to Theorem 7.22 in [LL96] to obtain that C*(R3*") is dense
in Hj(R3). As mentioned in the definition 7.20 in [LL96], one can show that H,(R3Y)
is complete with an argument similar to the case of H'(R?). Therefore, HY (R3:C2") =

@fil HL (R3Y) is also complete. In addition, CP(R3N;C2") = @]2:1 C*(R3N) is dense in
HL (R3;C2"). Thus it remains to show that ®jv:1 C*(R3; C?) is dense in CP(R3N;C2") with
respect to the topology of the ambient space H (R*N;C2"). This follows from Lemma in
Appendix [B] ]

Next we will add an external electrical field and the Coulomb interaction between the elec-
trons. For that purpose we will use Lemma [2.11

loc(Rd> fOT’ any
jef{l,....d}. Let f = (f1,...,fr) € HY(RE:CF) and |flv = (|fil,---,|fx])- Then we have
|flv € HY(RY; C*) and

2.11 Lemma (Diamagnetic inequality). Let a : R? — R? such that a; € L3

NV @) laxe < 1((=V +a() ) (@) laxe  for almost all z € RY,

where || - ||axx denotes the (2-norm on the space C** of complex matrices.
For a proof see Theorem 7.21 in [LL96]. Before continuing, we recall the following notion.

2.12 Remark. Let qi,q : D?> — C be two closable and symmetric quadratic forms on a Hilbert
space. We say that q, is relatively go-form-bounded with bound a > 0 iff there is some C' € R
such that

a1(¢,9)| < agz(¢,¢) + Cllo|?

for any ¢ € D. We call ¢, infinitesimally go-form-bounded iff for any a > 0 q; is relatively
gz-form-bounded with bound a. Due to the duality between positive closed quadratic forms
and positive self-adjoint operators, we adopt this manner of speaking to positive self-adjoint
operators. Note that this is consistent with the formulation of assumption (11).
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Recall that q( ) is defined in Equation (2.4).

2.13 Corollary. UVg(z1,...,xy) + Z;V L\ V(x;) is infinitesimally G, 0) -form-bounded. In par-

ticular,
N

qéN) = ngg) +UVC(z131,...,:EN) +Zv(xj) (2'6)

=
is closable and semi-bounded from below and the domain of its closure is H) (R3N:C2").

Proof. Define
N

Vo(z1,...,an) :=UVe(ay,...,an) + Z V(x;).
=1
We already saw in the last subsection that Vi is infinitesimally ZN (=4, )-form-bounded,

and therefore by assumption (1II) so is Vy. Let ® € ®] L CP(R? C?) and € > 0. For a suitable
choice of C, € R we find

(2, Vo®)| = [|®[v,Vo|®]v)]
e(—iV|®|y, —iV|®}y) + C.||®|[?
e|(=iV + A)®|]* + Cc||®|

£ (@, @) + C.||D| %,

N IN

where | - |y is defined as in Lemma [2.11, The second inequality follows from Lemma [2.11]

Subsequently, V{ is infinitesimally cjgg)—form—bounded and by Lemma Corollary [2.13| follows.

O

So far, we have only taken into account all the electronic interactions. Next, we will add the
phononic part. One can easily show that /H,, is essentially self-adjoint on Fy. Then Theorem
1 in Chapter 10 in [BS87| yields that F; is a form core of H,,. We have that ¢,, with

Qpn (D, ) = (N Hpndyn/ Hpnth) Vo, e Fo (2.7)

is associated with H,,. Before continuing, recall that Oy is defined by
B N
Oy = | RCP(R*;CY) | ® Fo. (2.8)
j=1
The next proposition is an easy corollary of Corollary if we employ Lemma
2.14 Proposition. The quadratic form GV : Q% — C given by

GO = qu) + qon (2.9)

15 closable and semi-bounded from below.

The upper index (N,0) indicates that we deal with N electrons and no coupling to the
phonons. This notation is consistent with the notation §™® below for the case of positive
coupling @ > 0. We have been using ¢ for a quadratic form with form domain ®] LCP(R3C?)
respectively Qy, where we have not imposed anti-symmetry on the electronic part of the wave

functions.
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Finally, we will include the electron-phonon interaction
qiy) O = C, (2, 1) = (,a(f™) D) + (a(f ™)@, T).

on (k) = Z;V 1 f[ |1§| for k € R3. We suppress the arguments of

to avoid imprec181on.l

Recall that we defined le

~~~~~

f™) in the notation for qg,p)

2.15 Lemma. qg p) is infinitesimally G0 -form-bounded

Proof. Let ¢ > 0 be arbitrary and A > 0 be some fixed real number and define

foa(k) = fE(k) - 1< k)
fono(k) = fOk) — fonlk)

for ke R® and x = (z1,...,zx) € R?. Throughout this article, 14 will denote the characteris-
tic function of a measurable set A. As mentioned above for f (fV ), we will suppress the electron
positions in the notation for a(fy) and a(fa«). Now let ® € Q. We have

(@,a(fON®)] < KP,a(fa)®)] + [(D,a(faw)®)l. (2.10)

One readily sees
KP,a(fa)®)l < [[@[] - [la(f2)2]] (2.11)

Then we compute
[(a(f2) @), kl,... 1)

—1ka:]

< \FJ
<n |2 v/2r k]
< \/ﬁ||®(n)(xakla7 n—l»')||2'MA

= (v Hp®) ™ (@, 1, . K1, )|z - Ma, (2.12)

1
N2 >2
My = ——dk
A (J 21|k |2

is some positive number depending on A.
Let I' € R such that fjé )—i—F > 0. Then also gV + T = ( )+F—|—qph > 0 and we find

using Estimates (2.11]) and ( and Equation ([2.7)

| (93',]{31,... n—1, )|dk5

where

5 M3
(Pa(f)®)] < San(®, @) + 2@

M2
~@™0 4 1)(@, @) + S| (2.13)

N

3The scalar product is taken in H but the lower indices of f(N) only refer to the electron positions (and not
to the phonon momenta).
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Bounding the second term in Equation (2.10]) is more involved. Define

N e_ik'mj k(])

oalk) = S ),
sl = Voerlk? >4

where ,
]’C(j) = (ORS(j—l)a kh k?) k37 0R3(N_j))T

and Oga denotes the zero vector in R?. For the subsequent estimates we define by abuse of
notation

a(ga) = (a((ga)i))h<i<ay and CLT(QA) = (aT((gA)i))1<i<3N~

Then an easy calculation gives

(D,a(faew)®) = (=1V + A)®,a(ga)®)

— (al(ga)®,(—1V + A)D), (2.14)

where the scalar product is taken in L2(R3V; C2" 3N )QF = (—D?:lgN L2(R3Y; F) and analogously

to the above
la(ga) @] < Kxq/qpn(®, D),

laf ()@l < Kay/apn(®, ) + [|2]2

N
Ky = f —dk) . 2.15
. ( o= 272 [K|* (2.15)

Then the Cauchy-Schwarz inequality yields

where

[NIE

(@,a(fac0)®)] < [[(=1V + A)P[ - [[a(g2)P]]
+ [la’(ga) @[] - [|(=iV + A)D|

. uls
< 2KA\/qu)(<I>, P) (qph(cp, ) + %) (2.16)

Let Vo(x1, 29, ..., an) := UVe(xy,29,...,xN) + Zjvzl V(z;). Then Corollary [2.13| implies that
for some 0 < n < 1 there is C;, € R such that

ie.,

So we have )
iy < E@N) +D)+C, < r(1+g™M +T)

for obvious choices of C, € R and r > 1. The last inequality together with (2.4) and (2.16)
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imply
K®,a(fae)®)] < Ka(@h (@, ®) + gon(®, @) + K4 ||®|[?
< KNGO £ T)(®, ) + Ka(r + 1)]|®]]

Since Ky — 0 as A — oo, we may fix A = Ay > 0 so large that rK,, < /2. This together with
the Estimates (2.10) and (2.13) finishes the proof. O

Define
q(]\/,a) — é(N’°)+\/5§§fZ)~ (2.17)

Proposition and Lemma together with Lemma imply that g™ is closable and
semi-bounded from below. Note that we have
q(Nva) — Q(NVO‘)‘Q?V
The notation without tilde indicates that we finally take care of the Fermionic statistics for
the electronic part of the wave function. We are now ready to prove Theorem

Proof of Theorem[2.7. ¢V is semi-bounded from below since it is the restriction of a quadratic
form which is semi-bounded from below. One can easily verify that ¢V® is densely defined
and as the restriction of a closable quadratic form, it is closable itself. It remains to show that
the domain of the closure may be embedded into Hy. Note that GV® being closable means
that the domain of its closure may be embedded into L2(R*N;C2") @ F 2 Hy and thus we
only have Q(¢™) ¢ L2(R*Y; C*") ® F.

Let ¢ := ¢V and (g, Q(q)) be its closure. Let further

N N
N ®L2(R3;C2) QRF — /\LQ(R?’;CQ)@)}- =Hn
j=1

j=1

be the canonical projection. We have that cj‘ﬂ(m( is densely defined and closed due to
the fact that 7|
Q(g)

™M Qxn € Hy, Qu is dense in 7V (Q(g)) with respect to || - ||; and thus

Q(a))
is also an orthogonal projection with respect to <,> Since Qy =

doy = drvio)

This means that the domain of the closure of q‘QN may be embedded into Hy.
We may finally apply Prop. [2.4] to associate ¢?¥*) with the Fréhlich Hamiltonian HN), [

At this point, we will briefly argue why CV:® (A, V, v) even exists when Assumptions (1), (11)
are fulfilled. This directly follows from CV) > E(N@) > _oo due to Theorem2.7/and inequality
(1.10) but we may obtain the existence apart from the above discussion. It is a well-known

argument but for convenience of the reader, we will repeat it. Let ¢ € /\;V:1 CP (R C?) = Enp

“N.b.: We have §(T,®,T,V¥) = §(®, V) for any 0 € SN, where T, permutes the electron coordinates with
respect to o.
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be normalized. Recall

N N
PNNA VU ) = Y (DaayhsDag,thy + 3 (V (w3)) + U, Ve
j=1 Jj=1
B pu(@)py(y)
OéJ‘RG |x—y| d(l’»y)

We have that Zjvzl V(z;) + UVe(x1, 2o, ..., xy) is relatively form-bounded with respect to
Zjvzl DL%DA@J,, see Corollary [2.13] so it suffices to bound the last term in the last equation.
Using Equation (1.12)) we obtain

u 2
J Md(@y) - ZJ Wi, aw)l pw(y)d(m,...,xmy)
R6 |-T - y| = R3(N+1) |xj _ y|
N
- W, aon)Ppu(y) N
SN dz1, ... o8, y) + —
4NJZ J}RB(NH) lz; — y? (21 TN, Y) .

N NS
< ¢ Z<DA,xj¢>DA,xj¢> +—
=1

In the last step, we applied the Hardy inequality together with the Diamagnetic inequality, see
Lemma [2.11} and we used the fact that g, py(y)dy = N.

3. Proof of Theorem

For the purpose of proving Theorem we closely follow the analysis in [Well5]. We need
in addition to take care of the Fermionic statistics. To this end we use a localization method
given by |LL0O5]. We recall that we always assume that assumptions (1) and (11) of Theorem

hold.

3.1. Localization of a multipolaron

Let p e N, and let My, My, ..., M, be subsets of R®. Then we define

Q(My x My x ... x M,) := U Myay X Mygay X ... Mo,

o€eSp

where S, denotes the p™ symmetric group.

3.1 Lemma. Let R > 0 and ® € Qn be normalized. Then there exist m,ny,no, ..., Ny, € N with
dtini =N, and balls By, Bs,. .., By, where B; has radius R;, with the following properties.

(i) dist(B;, B;) = R fori # j.
(11i) There is a normalized ®y € Qy with
supp(®o) < QX Bi"), (3.1)
i=1
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where supp, refers to the support with respect to the electronic coordinates and B]" :=
X i1, Bi, such that

(D, HNPY = (g, HN Py — 2r* N2R 2, (3.2)

Remark. In contrast to [Welll], the growth of the error in the lower bound now is of order
N? and not N.

Proof. As in |[Well5| we will subdivide the proof into two steps: In the first step, we will
construct an appropriate localized normalized function ®, which satisfies Estimate (3.2]) and
having (electronic) support within Q(X 1, Br(y;)) for some y1, 1, ...yn € R®. In the second
step, we will inscribe Xf\il Bpr(y;) into the cartesian product X", Bi" of possibly bigger balls

and use the fact that then N

QX Baly) € QX BY).

i=1 i=1

Indeed, for any k£ € N and any subsets A; < fll, Ay C flg AR C Ak of R? we have
QA x Ay x ... x Ag) < Q(fll x Ay X ... xflk).

This argument combined with the antisymmetry of ®, gives (3.1]) and concludes the proof.
Step 1: Let y € L*(R3;R) be a non-negative, normalized and C® function with supp(y) <

Br(0). Further let YV := (y1,45,...,yn)" € RN be arbitrary. We will later fix a value for
Y ™). We employ the proof of Lemma 4.1 in [LL05]. Define

N
G(7Y(N)) : RgN - R7X(N) = ($17$27 s 7$N)T — Z nX(xz - yﬂ(z))a

meSy =1

where again Sy denotes the N symmetry group and

PR R XN = (21, 29,...,25)" — G(XIM) z(N2q 7N,

R3N

As stated in [LLO5], we have that for any X™) = (z1,2,,...,25)" € R3Y
P(XM)Y) = N!.Per(M), (3.3)

where M;; := M(XM),; := $ps X(zi —y)x(z; —y)dy = 0 for any 1 < 4,5 < N and Per(M)
denotes the permanent of the matrix M. M is a hermitian matrix with only positive elements.
Hence we obtain

Per(M) = [ [ My = 1.
=1

Together with (3.3) this yields for any X(V) ¢ R3V

~

P(X™)) > NI (3.4)

Thus we may define
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and

\IJY(N)(') = W(7Y(N))(D()7
where we suppress the phonon indices in the notation. Note that we have Uy € Qn due to
the symmetry of W (X Y (™) with respect to relabeling indices in X = (z1,...,zx)T and
due to the regularity of W (-, Y™). We abbreviate

N2
AE(Y(N)) = <\I’y(N),H(N’a)\I/y(N)> — (<(I>,H(N’a)q)> + bﬁ) <‘Ify(N),\Ify(N)>

with b := 272, Note that b is twice the lowest eigenvalue of the Dirichlet Laplacian on Bj(0).
We will show {AE(Y)dY < 0 for an appropriate choice of x. In particular, this yields the

existence of some YO(N) € R3M such that Uy, v # 0 and
0

<\IJYO(N),H(N’ )\IJYO(N)> < (<(I),H(N7 )(I)> + bﬁ) <\11Y0(N),\I/YO(N)> (3.5)

which then finishes the proof.
First of all, we notice §{ W(X®) Y M)2qy (™) = 1 due to the choice of W and thus by Fubini’s
Theorem

[ vy ™ - @) - 1

The multiplication with W (-, Y ™)) obviously commutes with all but the kinetic part of the
Hamiltonian. In particular, if we define

(= g™ = 4] g (3.6)
see Equations (2.2) and (2.4), we find
| a0y y)ar® = (@.0). 1)

~

In order to calculate the commutator with the kinetic part qefg) = Z;VZI DLM D g;, we compute

{(Dag,)keVy,(Dag)k¥ym)y = {(Va,)iW]*®,®)
+ R(=1Va) kW12, (D a g, )1 ®)
+ <W2(DA,xj)k(I)7(DA,xj)k(I)>-
We have that {W/(X™ Y20y ™) = 1 implies §{(V,,)[W(, Y P(XI)dY™ = 0 and

so the second term of the r.h.s. of the last equation yields zero when we integrate with respect
to dY™). Again by Fubini’s Theorem, we find that the last term gives {(Dae; )k ®,(Dae;)x®)
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when we integrate with respect to dY' ™). We arrive at
N
J G (T, Uyn)dY ™) = 3 J<D iy Wy, D, Wy YY)
=1

= i ({Day; ®,Dap, @) + (B, F;(XMN)DY) (3.8)

N
= 3@, @) + Y (D, F(XM)®),

j=1

where Fj(X™) is given by
FOXY) = [V, [6(.y @) PO 2 () ay )
As in the proof of Lemma 4.1 in [LLO5| we argue in Appendix |C| that we have
Fi(XM)y < NJ V() [dz. (3.9)

We continue as in [LLO5| and let x € C* approximate the lowest Dirichlet eigenfunction of —A
in Br(0) such that

N? J IVx(z)]*de < N?*m*R7% +¢,

with € := N272R72/2. Note that 72R™2 is the lowest eigenvalue of the Dirichlet Laplacian on
Bgr(0). This then gives us
F;(X™)) < 3N7?/(2R?). (3.10)

Equations (3.6), (3.7), (3-8), and inequality imply inequality (3.5). Thus defining ®; :=
\IJYO(N)/H\I]YO(N)H we finish the proof of Step 1.

Step 2: Since the second step does not involve the shape of the given Hamiltonian but only
the geometry of the support of the given function, we can apply the proof of Lemma 3.1 given
in [Well5]. For the sake of completeness we will repeat the argument in here. We will show
that there are m < N, ny,..., n, € Nwith Y, n; = N, balls By, Bo, ..., B,, and a permutation
o € Sy such that ><j:1 BR(yU(j)) < X", B/ and (i) and (i7) in the assertion hold by running
induction on N. Due to the antisymmetry of ®; we may assume without loss of generality that
o is the identity and thus ®, satisfies the assertion.

N = 1 is trivial. Assume the induction hypothesis holds true for N electrons. So choose
m < N, fuy,..., Ny € N with . n; = N, balls By, Bs, ..., By and a permutation & € Sy such
that ><;.V:1 Br(ys(;)) S X ™ B and (i) and (ii) hold. Consider one further ball Br(yn1)-
Two cases can arise:

Case 1: For any 1 < i < 7 we have dist(B;, Br(yn+1)) = R. Then we define 0 € Sy by
=¢ and o(N + 1) '—N—i—l mi=m+1,ny,:=1,n:=n;, Bi:=B;,1<i<m-—1,
and B, := BR(yNH) Hence, ><j ! Br(yo(y) € X, B and (i) and (ii) hold.

Case 2: There is 4, € {1;...;7m} such that dist(B;,, Bg(yn+1)) < R. Then there is a ball
BM 2 By, U Br(yni1) with radius (3R + 2R;,) = 1(3(7;, + 1) — 1)R. 1If then for any
ig € {1;...;{1; ...;m} we have dlSt(B(l),Bw) R, we define B;, := B" and n;, := 7, + 1,
m:=(m+1)—1=m, B; := B; and n; := n; for any ¢ # 4;. Otherwise, by iterating this
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procedure, we finish step 2. O]

In the last proof we have seen that we may ensure for ¢, that

g € {™(V)] supp, (V) = X Bi"} = 7Oy = Qw,
i=1
where again 7(V) @jvzl (R C?) ® F — /\j\/:1 L?(R3 C?*) ® F = Hy is the canonical pro-

jection. For the definition of Qy see Equation (2.8). Indeed, up to a constant prefactor, @ is
given as

PXM) 2T ] xy = wo) 7™ (@) (X )

ceSy j=1

= N1 <P<X<N>>—1/2 [Tt - yj>w<X<N>>> .

j=1

Let PO ®;:1 L3(R3; C?) — /\;=1 L%(R3; C?) denote the canonical projection and by abuse
of notation we extend ), P") to the whole of @;V:lL?(]R?*;(C?) ® F. A simple calcula-
tion yields that for the above (disjoint) balls By, ..., B, and for supp, (V) < X", B and
7N (T)|| = 1 we have

@) HEOTO @) = V@), 7))

I (@I, P(W), @I, P (1)
|, PP

For the definition of gV see Equation (2.17) combined with (2.4), 2.6), (2.7), and ([2.9).

As a consequence of the last equation, we have that minimizing the energy of an N-polaron
contained in m balls is equivalent to minimizing the energy of an ensemble of m multipolarons
with total electron number equal to N. This means, that in the following we may restrict our
considerations to the states in @/, P")(Qy).

In our next step, we will bound the total many-particle ground state energy from below by
the sum of the ground state energies for less particles supported on the balls described above
and the interaction between the balls. For n € N and a Borel measurable set O < R3?, define

E9(0) = inf  (O,H™P).

In the physical sense, this denotes the ground state energy of an n-polaron whose electrons are
contained in O. Note that E7(L°‘)(O) clearly depends on the external fields A and V' and on the
coupling strength U.

The following proposition generalizes Lemma 3 in [FLSTII]. As in [Well5], the treatment of
the bipolaron is transfered to the multipolaron case.

3.2 Proposition. Let U e ", P")(Qy) be normalized with supp,(¥) € X", B such that
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d; = min,,; dist(B;, B;) > 0 for any 1 <i < m. Then U satisfies

A Na Y (e 8alN h n;
R VIR UEN) 3 [RS8
i=1 i<j kieC; le| [

1;€C;

where C; denotes the set of electrons supported in B;.

Proof. As in [Well5|, we start by subdividing R? into the "area of influence" of the single
multipolarons. More precisely, we define

S; = {z e R%| dist(B;, x) < dist(B;,x) Vj # i}

and find S; N S; = & for any ¢ # j. For dist(B;, B;) > 0 if j # i, we have B, < S; as well as
U, Si = R

Next, we rewrite ¢V with respect to this spatial partition. In the sense of a quadratic form
on @, P")(Qy), we write

q(Na Z(Z ﬂ+\/7¢$l +UZ —$5|>+th

leC, r,s€C;

+UY Y |xn_%

i<j r;€Cj,
s;€C5

where T} = DLWDAM + V(z;). Then we define

~ 1 ikx ~ e 1 —ikx
i) = (%)wfe o)k, () = J ekt ()

in the sense of quadratic forms acting on F. By Plancherel, we deduce

1 J aly) +a'(y) |

¢(:E) = 7T3/2 |Q§' . y|2

yo Hp = J&T(y)d(y)dy-
As in [Well5], we introduce annihilation operators restricted to S; 2 B; by a; := (a + ¢;)1s,

with
gi(y,x1,...,xN) = 3/222

We introduce some further notation to apply the result given in [Well5]. First we define
operators contributing to the inter-ball exchange energy

Fl('rla--'va) = ZHgi(lev"'?mN)HQ

g; y,xl,...,x]v)
FQ(xla s ,.ZCN) = 3/2 Z ZJ |$l - dy

2
i=11eC; y|

(3.11)
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Second, in the sense of a quadratic form on A", C*(R?; C?) ® F(L2(S;)), we define

j=1%"c

K = )] (Tz ;é; iy HaT(y)dy) +J al(y)ai(y)dy

leC; Si |xl y | ’

(3.12)

This term corresponds to the energy of the electrons supported within B; and the phonons
which are closer to this ball than to any other ball, including the electron-phonon interaction
between these. Then by the proof of Proposition 3.2 in [Well5] we obtain

FV (1, D) Z<\I/K\I!>+UZ D <\If \If> (U,(Fy + 1) V).

i<j r;€C;
s;€C;

Recall L*(R?) = @}, L*(S;) and thus F(L*(R?)) = ®;~, F(L*(S;)). In the last equation, we
then identify the quadratic form indicated by K; with its obvious extension to

(Q) <</\ L*(R%; @2)> ®]—"(L2(SZ-))> .

=1

Using the last equation and Lemmata and below, the proposition follows.
[

3.3 Lemma. Let 1 <i < m and K; be defined as in Equation (3.12). Let ¢ € (A2, L*(B; C?))®
F(L2(S;)) be normalzzed Then
W.Kip) = Bi(By).

3.4 Lemma. Let ¥ e X).", P")(Qy) fulfill the assumptions in Proposition and Fy, Fy be
defined as in Equation (3.11). Then we have

(i) U F1¥) < NI§Xt, %
fii) (W, W) < 2azi<jzmegi<xv,mw>.
s;€0C5 ® J

These last two Lemmata directly follow from the proofs of Lemma 3.3 (for Lemma and
Lemma 3.4 (for Lemma in [WelT5]. The proof of Lemma 3.3 in [Well5] uses the Weyl
operator

and

W(g;) = i (gi)—a(gi)

It is important that g; only depends on electron coordinates that are not contained in B;. So
W (g;) is not affected by permutations of electron coordinates within B;.

3.2. Lower bound for the energy of a localized multipolaron

As in [Well5]|, we will basically employ ideas from [LT97] (see also Erratum) to bound the
energies of the single multipolarons found in the last part by the Pekar-Tomasevich functional
given for ¢ € A7, C°(R? C?) by

P(n’a) (A7 ‘/7 U7 w) = (jén) (¢7 w) - a‘D(IOTZ))
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(see Equation (2.6])), where n > 0 is an integer and

D) = | PPY) 4 )

o |z —yl
indicates the self-interaction. Recall that

ZJ V(@1 1, Tty ) PA(Ty, T T)

3(n— 1)

denotes the (electron) density. First we will use a ultra-violet cut-off for the phonon modes
and then we will make use of the so-called block modes of which there are only finitely many
contained in a finite ball.

Let O < R? be a measurable set. Then we define

No := J a' (k)a(k)dk.
0
For a normalized h € L?(R?) we will use the short-hand notation

a(h) = f h(k)a(k)dk.

If supp(h) € O, then a'(h)a(h) < No.
At first, let A > 0 be some fixed positive real number. Let By := B, (0) and as in the proof
of Lemma, [2.15],

—1kacj

E\FW By (k), x=(x1,...,2,),

and f:=1— 20‘” . In order to abbreviate the notation henceforth, we introduce the total mag-
netic vector potentlal A, = (A(21),..., A(z,))". For convenience, let V,(z) := 37 | V(x;)

and Dy, = —ivV 4+ A, Where \AQ) denotes the derivative in R3”. Then we define the cut-off
Frohlich Hamiltonian

H{" = B(D} Da, +UVe(2)) + V, +va(a(f{”) + a' (f{")) + Np,.

Arguing as in (2.12) we can show that v/a(a ( ") +a( [(Xn))) is N p,-bounded with bound zero.
From this it follows that H/(\ ) is a self-adjoint operator with the same domain as that of the

free cut-off Hamiltonian H{""

3.5 Lemma. Let o > 0 and n € N. Then for any choice of A > 0 we have, in the sense of

quadratic forms on Q,,

H(n,oc) > H/(\”va) . %

Proof. Let ® € Q,,. As in the proof of Lemma [2.15| we decompose

(@.a(f™)®) = (@,(a(f}") +[Da,.algd”)]) )
in the sense of (2.14)). If we use (2.16]) and (2.15) with N replaced by n, we arrive at

Val(®,[Da,, a(g{")]|®)| < e(Da,®,Da, @)+ <<I> N @) + —||d>||2
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for any arbitrary value of € > 0. Now choose ¢ = 2;‘—/? and the result follows. ]

3.6 Lemma. Let P,A,r > 0 and y € R? be arbitrary and ® € Q,, be normalized such that
supp,(®) € B,.(y)". Then we have

(@HMIP) > FOMI (A, 7V, U) - TS D

Proof. Since C™®) is constant with respect to shifting the fields A(-) — A(- — y) respectively
V(-) = V(- —y), we may assume without loss of generality that y = 0.

We start by estimating H™® from below by the cut-off Hamiltonian H/(\"’a) in the sense
of quadratic forms on Q,. Then we compare the cut-off Hamiltonian with the Hamiltonian

obtained by replacing the (continuous) phonon modes by (discrete) finitely many so-called
block modes. Define

B(m) := {ke By| |ki —m;P| < P/2VY1 <i <3} foranymeZ®

= {meZB(m) # &}

~—

[1]

and for any m € = choose some k,, € B(m). The block modes are defined as

1 f 1 dk \ "
Uy = —— —a(k)dk, M, = (J —) .
M, B(m) |k| B(m) |k|2

We have that h,, := M, '| - | '1pum) € L*(R®) is normalized and a,, = a(h,,). Let 6 > 0 be
arbitrary. Then we define

HI .= B(D}, Da, + UVe) + Vi + (1 = 6) Nytoek

N — ik
+ —Z Z M, (e*m®iq,, + e Fmeigh 3
oL j=1me=

where Nyoer = >, = al a,,. Since only the phononic part is of interest, we may apply the exact

me= " m

same steps as in the proof of Proposition 4.2 in [Well5] to arrive at the assertion. O

Henceforth, the arguments in [Well5] do not involve the statistics, so we will state the results
without proof. The next proposition follows as in [Well5| from Lemmata [3.5|and [3.6]for suitable
choices for A and P.

Recall that in Theorem [1.1] we defined A, and V,, as A,(z) := aA(ax) and V,(z) := o?V (az)
where A and V satisfy the assumptions (1) and (11) of Theorem We further denote by
Br., an arbitrary ball of radius 1(3n — 1)R if R > 0 and n € N. Since we explicitly need the

2

dependence of the energy on all of the parameters n,«a, A,V and U we will emphasize it in the
. .- (a, A,V,U)
notation by writing FEj, .

3.7 Proposition. In addition to assumptions (1), (11), let A, V satisfy assumption (111) of
Theorem 1.1 Then there is ¢(A, V) such that

Er(loa,Aa,Va,oa/) (BR,n) > CYQC(n’l) (A, V, l/) . 3R2a80/23n5 . C(A, V)oz42/23n3

for any a,v, R > 0, and n € N. Furthermore, if we even have Ay € L} (R?) and V € L3/2(]R3)7

loc loc

then c(Ag-1, V1) is uniformly bounded for a large enough, e.g., for a = 1.
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3.3. Conclusion of the proof of Theorem 1.1

We are finally ready to prove the main Theorem analogously to the proof of Theorem 1.1
in [Well5].

Proof of[1.1} Let ® € Qy be normalized. In order to emphasize the dependence of H*) on
the parameters A, V and U, we will denote it within this proof by

HNaAVD)
Lemma [3.1] Proposition and the assumption v = 2 of Theorem [1.1] imply

(N,a,Aq, Vi ,o)) S (@, Aa,Va,av) 8aN? 2272 P2
(D)H O, A, Va, @ > E‘7 asVa, B’L _ _27-(-NR
i ™R
i=1

—19/23

with the above notation. If we now choose R = N~ 'a , we may apply Proposition to

obtain

[e% av Mg ~ nl2
pleAaVee) (B > Q200D (A, V,v) — &(A, V)™ %} (1 + m)

for some &(A, V). In here, recall that for ||[i|| = 1 and ¥ (z) := a2 ¢(az) we have [[ih]| = 1
and

P(n’a) (Aay Vay av, 2/}Clz) = a27)(n,1) (A7 V’ v, w)

Thus we obtain C™(A,, V,,av) = o?C™V (A, V,v). Now we use Y.;* n? < N3 and the
assumption ([1.17) on the external fields to conclude

<®7H(N,a,z4a,va,oa/)¢> > QQC(N,I) (147 ‘/'7 7/) o é(A, V>a42/23N3 o a38/2327T2N4

for some ¢(A, V). Since Qy is a form core of H™®) due to Theorem [2.7, we finally arrive at
the initial assertion

EWN) (A, Vi, av) = o2CTD(A V1) — ¢(A, V)a*¥ B N*
for some c¢(A,V) € R. Part (i) now follows analogously to the proof of part (b) of Theorem
1.1 in [Well5). O
4. Binding of Frohlich polarons

We now give an example of an application of Theorem Given external fields A and V,
Theorem combined with the inequality (1.10) and Remark states that the ground state
energy of a Frohlich N-polaron may be estimated by

CNA,V, av) = c(Ag-1, Vo )P N < BN (A, V, av) < CV9(A,V, av)

for o large. This means that the Pekar-Tomasevich functional already gives a rough estimate
on the ground state energy of the initial Frohlich Hamiltonian. We define

AEWN (A V,av) = [ min (B®) + EN=ka) _ pNa)](A,V, av).

1<k<N
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If we further assume that A is linear, we may apply Theorem 1.1 in [AGI14]. It states that for
ACW) (A V, av), which is analogously defined to AE®N*)(A,V, av), we have

ACH™D(A,0,v) >0

provided 2 < v < vy for some v4 y > 2. Note that [Lewll] proves an analogous result for
A=0.

Corollary. Assume the vector potential A is linear (corresponding to a constant magnetic field)
and V = 0. Then for any N € N there is vy 4 > 2 such that for any 2 <v <vya and o > 0
large enough

AEWN(A,,0,av) > 0.

Moreover, if A, € L} (R3) and V € Li{f(R?’), then there is vy > 2 such that for any 2 < v < vy

loc

and any o > 0 large enough we find
AEWN (A V, av) > 0.

[Well5] obtained this result without taking the Fermionic statistics into account. This corol-
lary yields that in the strong coupling limit Fermionic Fréhlich multipolarons form a binding
state.

A. Proof of Lemma 2.9

Before we turn to the actual proof we recall the following result given in [RS72|, Theorem
VIII.33:

A.1 Lemma. Let Ay, As,..., Ay be self-adjoint operators on Hilbert spaces hy, hs,..., hy and
let A; be essentially self-adjoint on a domain D; for any 1 < j < k. Then Ay + Ay + ... + Ay
15 essentially self-adjoint on ®§:1 D;.

This Lemma and the duality between closed quadratic forms and positive self-adjoint oper-
ators are the key ingredients of the following proof.

Proof of Lemma[2.9 Define g; to be the closure of ¢;, j € {1;2}. Then

(Q1 + qQ))‘D1®D2 = q1 + g2,

where q; + @2 is analogously defined to ¢; + ¢2. Next we define in virtue of Proposition A,
to be the positive self-adjoint operator associated with ¢;, j € {1;2}. Then by Lemma

(A1 + A2, D(A)) @ D(A,))

is essentially self-adjoint. Next we note that due to the equality of the respective norms we
have D(y/A;) = Q(g;), see Proposition and so D; is a domain of essential self-adjointness
for ,/A;. In addition, it follows that D(A;) is a dense subset of Q(g;). To see this, we recall an
argument given in [BS87]. Indeed, assume there is some 1y € Q(g;) such that 1y L) D(4;),
so in particular q;(@, o) + {¢,%0)n; = 0 for any ¢ € D(A;). Including q;(¢,v0) = (A;jd,%0)n;,
we find ¥y Ly, R(A; +1). Since A; is self-adjoint and 0 ¢ o(A; + 1), we obtain R(A; +1) = h;
and thus ¥y = 0.
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In the next step we will see that it is possible to defind’]

S = A4+ A,

on Dy ® Dy by comparing it with

T = \/Al +\/A2.

Again by Lemma T is essentially self-adjoint on D; ® Dy and also on D(A;) @ D(A,).
Let ¢ € D(Al) ) D(Ag) We find

1S01]F = (Av+ A2,0) = (A1,¢) +(A20,0)

(A1,0) + 2/ A o0/ Asd) + (As,0) = ||T ||
2((A10,0) + (A20,0))
2(|So|?,

NN

ie., [[So]] < ||[To]] < v2[|S¢|| and so the operator norms are equivalent. Since for both
operators, S and T, D(A;) ® D(As) is a domain of essential self-adjointness we deduce

For T is essentially self-adjoint on D; ® D, so is S. Next we want to establish that (S -
,S.>‘<D1®D2)2 coincides with ¢; + ¢2. We derive for ¢, 1 € D(A1) ® D(A,)

since (S¢,5v) = (A19,0) + (A2¢,2) and g; is associated with A;. Hence we find that the
completion of D(A;) ® D(As) with respect to || - ||,+4, 1S equal to

DA)®D(A) " = D(5).
So Equation (A.1) holds for ¢,9 € Q(A41) ® Q(Az) = D(VA1) ® D(VAy) < D(T) = D(S).
In particular, Equation (A.1) then also holds on D; ® Dy € Q(A;) ® Q(Ay) for which ¢ + ¢

coincides with g; + g2. Since S is essentially self-adjoint on Dy ® Dy, we then conclude that the
completion of D; ® Dy with respect to || - ||4,44, 1S equal to

Finally, this implies that (S -,S-) is the closure of ¢; + ¢» and therefore Lemma [2.9] follows. [J

B. Tensor product of C’-spaces

The goal of this Section is to show that

HY (R3V;c2™)

X) C*(R3; C2) o CP (RN, ). (B.1)

Jj=1

=

5By A we denote the closure of an essentially self-adjoint operator A.
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We will instead prove the following lemma. Then (B.1]) follows by induction or directly with a
proof that is analogous to the proof of the lemma.

B.1 Lemma. Let a; € L?

loc

(RéHd2) 1 < j < kyky. We have (up to an isomorphism)

HA(RA+d2,Ch1k2)

Cgo (Rdl : (Ckl) ® Cé)o (Rdg; Ckg) - Cgo (Rd1+d2; Ckﬂcz).

Proof. Take f € C(R%*42; CFk2). Without loss of generality suppose that supp(f) < [—1, %]d““d?.
Since for g € C*(R%; C*) ® CP(R%; C*) we compute
ko

||f_g||12qé(]Rd1+d2;(ck1k2) = Z ||fj _gj”?{é(Rdﬁdz)?
j=1

where we write g = (g1, ..., ik, )~ € CL(RUFdz; Ckik2) it suffices to only consider one compo-
nent of f.
So fix 1 < j < kiko. Let (¢,), be a sequence satisfying

J cn(l—2%)"dz = 1
[1,1]

for any n € N and define

d
¢?: RIS R, z— ncn(l — )"

j=1
We then introduce
11

11 -
Qu: G5, 51" = ([, 517, g (6 © 42) 31|

where g is the trivial extension of g to the whole of R%%92. One can easily check that (Q,)
yields an approximate identity (cf. Theorem 7.26, [Rud64]). This then means that Q,(f) — f
in C*([—3, 2]“*%). In addition to the argument given in [Rud64], we also use

0:(Qn(g)) = Qu(0ig) forany 1 <i<d; +dy

to establish convergence in the C'-norm. We even have R(Q,) € P@+%) swhere Pldi+dz)
denotes the polynomials in d; + do variables.

Now take x € CX(R) with 0 < x < 1, X‘[_; g =1 X‘[_; 1. = 0 and |x'| < 7. Define
3’3 272
N () = H?;"l (), v = (z1,...,24,) € R¥ m e {1;2}. For convenience we abbreviate

K :=[—1,1]%1%% Then choose n € N sufficiently large such that

3

1O (5] o) = fil ey < .

for a suitable choice of k1 yet to determine. By abuse of notation we will identify @), with its
(obvious) extension to C}(R%+%2). Next we define

£ = (i @m) - Qulf;).
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Since we have R(Q,) < P(+%), it follows that [ € C2(R™) ® C2(R®). We find

n 3
177 = Fillesreany < —

for some ko depending on k4. Finally, we arrive at

15" = il gy = N = I+ (Y +a) (£ = £)I13
< 1A = fil2 4 2RV — f)al i — £))
+lalf" — £)113

< 2(1+ [lalgl2) [1F7 — £il12

2
20 )

K3

where the last inequality holds for an obvious choice of k5, and thus of x;. This concludes the
proof. O

C. Auxiliary results for the localization of a multipolaron

Proof of Equation (3.3)). Let X™) = (2, 29,...,7y5) € R?M. Then we have

P(X™) = J(Z Hx(xi—yw(o)) dy = J(Z ﬂww—%)) ar

meSy i=1 eSSy i=1

- Z H JX(%@') — Yi)X Ty — yi)AY

m,mw'eSy =1

N N
= NI ). J]_[x(xﬂ@ —y)x(@i —y)dY = NU Y | [ Mingy
i=1

TeESN TeSN i=1

= N!-Per(M).

]

Proof of inequality (3.9). We will repeat the steps given in the proof of Lemma 4.1 in [LLO05].
First of all, we compute

Vo, [GC YN PTPYXM) = P(XI)T2Y, (G, YD) (X))
G()((N)7y(N))(ijp)(X(N))
2P(X(M))3/2

Employing (V,, P)(X™)) = 2 { G(X™ YN[V, G(-, Y (XM)AY ™) together with P(X™)) =
§G(XM Y2y (VM) we obtain

(V. P) (X))
AP(XM)Y2

< PO [ 19,606, YD) Fay ™) ()

FXN) = PO [ 19, G Y1)y @) -
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where we dropped the last term since we are only interested in an upper bound on Fj. Next
we rewrite G by first defining

Mk(X(N’j),Y(N’k)) = Z nX(ﬂﬂl—yw(z))

ﬂ'eS']j\;lil I#j

where ZWN0D = (21, 29,...,4,...,2y) and S]{}k | denotes the set of bijections from {1;. .. 75 N}
into {1;...;k;...; N}. We further set al? (X YV := y(z; — yp) e (XD, Y VR and ob-
tain
N
G’(X ZX — ) s X(NJ y(Nk Z N)’Y(N))'
k=1 el
This then yields

N
J|V$jG|2dY(N) = Z f Vo Vo dy™ < N f |V, a|2dy ™)
k=1

k=1

= NZ J [(VX) (x5 — ye)|Pdus J pup (XN y (VR 2y (NR), (C.2)

As in the proof of (3.3]), one can easily show

M;; fuk(X(N,ﬁ)’Y(N,l%))2dy(N,fc) — (N —=1)!- M;;M;; < (N —1)! - Per(M)

=)
1]

' P(XM)/N, (C.3)

where M;; is set to be the cofactor of M;; in the permanent of M. Recall M;;M;; < Per(M)
due to M,,, = 0. Since M,; = 1 by the choice of x, from (C.1), (C.2)) and (C.3) it follows that

Fj(XM) ZJ|VX| do = NJ|VX| dz
k=1

as desired. O
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