
Multi-level local time-stepping
methods of Runge-Kutta type
for wave equations

Martin Almquist, Michaela Mehlin

CRC Preprint 2016/16, July 2016

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu

Participating universities

Funded by

ISSN 2365-662X

2

MULTI-LEVEL LOCAL TIME-STEPPING METHODS OF
RUNGE–KUTTA TYPE FOR WAVE EQUATIONS ∗

MARTIN ALMQUIST † AND MICHAELA MEHLIN ‡

Abstract. Local mesh refinement significantly influences the performance of explicit time-
stepping methods for numerical wave propagation. Local time-stepping (LTS) methods improve
the efficiency by using smaller time-steps precisely where the smallest mesh elements are located,
thus permitting a larger time-step in the coarser regions of the mesh without violating the stability
condition. However, when the mesh contains nested patches of refinement, any local time-step will
be unnecessarily small in some regions. To allow for an appropriate time-step at each level of mesh
refinement, multi-level local time-stepping (MLTS) methods have been proposed. Starting from the
Runge–Kutta-based LTS methods derived by Grote et al. [17], we propose explicit MLTS methods of
arbitrarily high accuracy. Numerical experiments with finite difference and continuous finite element
spatial discretizations illustrate the usefulness of the novel MLTS methods and show that they retain
the high accuracy and stability of the underlying Runge–Kutta methods.

Key words. finite element methods, SBP-SAT finite differences, explicit time integration, local
time-stepping, multi-level, multirate methods, hyperbolic problems

AMS subject classifications. 65M60, 65L06

1. Introduction. Wave type phenomena are common in many fields of science,
such as seismology, acoustics, and electromagnetics. The propagation of waves is often
modeled by partial differential equations (PDEs), for which it is important to have
accurate and efficient numerical solvers. In the presence of small geometric features
or re-entrant corners in the spatial domain [33], locally refined meshes around the ob-
stacles allow for accurate simulation without introducing too many spatial unknowns
and are thus computationally efficient. Local mesh refinement, however, comes at a
high price for explicit time integration as the stability restriction on the time-step
depends on the smallest mesh-size. If the locally refined region is small compared
to the entire computational domain, the costs of using a tiny time-step or an im-
plicit scheme everywhere are too high. Instead, one might hope to use different
time-steps or a combination of implicit and explicit schemes. Such strategies are not
new in the community of ordinary differential equations (ODEs). Multirate methods
[35, 15, 19, 9, 23, 10] and so-called IMEX (implicit-explicit) schemes [2, 24] are estab-
lished methods when coming across naturally split systems of equations, where the
different components evolve on different time-scales.

Over the last decades various local time-stepping (LTS) methods have been de-
veloped in the PDE community to deal with the time-step restriction caused by local
mesh refinement. LTS methods utilize that the ODE in time comes from the spatial
discretization of a PDE by dividing the spatial mesh into two distinct regions, “fine”
and “coarse”. One class of LTS methods is locally implicit schemes, which use an im-
plicit scheme in the fine part of the mesh while remaining explicit in the coarse part.
Thus, they retain one global time-step dictated by the mesh-size in the coarse region.
Popular second order schemes and their analysis can be found in [34, 39, 12, 21], and

∗M. Mehlin gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft
(DFG) through CRC 1173 and by the Swiss National Science Foundation.
†Division of Scientific Computing, Department of Information Technology, Uppsala University,

SE-751 05 Uppsala, Sweden, (martin.almquist@it.uu.se).
‡Institute for Applied and Numerical Analysis, Karlsruhe Institute of Technology, 76128 Karl-

sruhe, Germany,(michaela.mehlin@kit.edu).

1

2 MARTIN ALMQUIST, MICHAELA MEHLIN

higher order methods are presented in [25, 6]. Another LTS approach is fully explicit
local time-stepping methods, which overcome the severe stability restriction caused by
the locally refined mesh without solving linear systems on the fine part. Instead, they
use a smaller time-step precisely where the small elements are located [8, 34, 13, 16].

In the presence of hierarchical meshes with several levels of refinement, the dis-
tinction between coarse and fine elements is no longer sufficient. If, for example, a
locally refined region contains a subregion with even smaller grid sizes, it is no longer
clear how to divide the unknowns into coarse and fine. Placing mesh elements with
medium size diameter in the fine region increases the cost there as they are advanced
with an unnecessarily small time-step. Counting those unknowns as coarse, however,
will require an inappropriately small time-step in the coarse region. Ideally, one would
like to use more than one local time-step. Based on the arbitrary high-order deriva-
tives the DG ADER approach [38] allows every element to have its own time-step
dictated by its mesh size. When considering other spatial discretization techniques
than discontinuous Galerkin (DG) methods, multi-level schemes appeared in recent
years, where the mesh is sorted into several levels with an appropriate time-step on
each. In [1] Angulo et al. proposed a causal-path LTS technique for both the second-
order leapfrog (LF) and a fourth-order low-storage (LS) explicit Runge–Kutta (RK)
method [5] applied to Maxwell’s equations, which sorts elements in tiers according to
their size and computes required intermediate values recursively. Recently, Diaz and
Grote extended their energy-conserving LTS-LF scheme [13] for the acoustic wave
equation into a multi-level version [14]. In [36] Rietmann et al. derived a new LTS
method based on the Newmark scheme, which also can be extended to accommodate
multiple levels of mesh refinement. It is further shown how performance and scala-
bility compare between different partitioning tools on CPU and GPU clusters using
examples from computational seismology.

Herein we propose multi-level methods based on the LTS-RK schemes derived by
Grote et al. in [17]. The multi-level LTS-RK (MLTS-RK) schemes allow for arbitrarily
many local time-steps. They maintain the one-step nature of the underlying RK
method and thus require no starting procedure and allow for adaptivity in time. This
novel approach further retains the explicitness and accuracy of the underlying RK
scheme.

The rest of the paper is structured as follows. As a model problem we consider
in Section 2 the damped second order wave equation. Following the method-of-lines
approach, we discretize in space using both continuous finite element methods (FEM)
with mass-lumping and Summation-By-Parts–Simultaneous Approximation Term fi-
nite difference (SBP-SAT FD) methods. We then briefly recall the LTS-RK method
in Section 3 and combine it with SBP-SAT FD schemes. In Section 4, we extend the
LTS-RK scheme to cases with several levels of mesh refinement and describe how to
implement the MLTS-RK algorithm. In Section 5 we prove that, like the LTS-RK
scheme, the multi-level variant retains the accuracy of the underlying RK method. We
also discuss the computational cost of the developed algorithm. We conclude this ar-
ticle by presenting numerical experiments where we combine the MLTS-RK methods
with both continuous FEM and SBP-SAT FD in one and two space dimensions.

2. Spatial Discretization. We consider the wave equation,

(1)
utt + σut −∇ ·

(
c2∇u

)
= f, in Ω× (0, T),

u = g, on ∂Ω× (0, T),
u(·, 0) = u0, ut(·, 0) = v0, in Ω,

MULTI-LEVEL LOCAL TIME-STEPPING 3

as a model problem. Here Ω is a bounded domain in Rd, f = f(x, t) is a source term,
and u0 and v0 are initial data. At the boundary, ∂Ω, we impose a Dirichlet condition;
g is the boundary data. The wave speed c = c(x) is piecewise smooth and strictly
positive (c(x) ≥ c0 > 0). The damping coefficient σ = σ(x) is assumed non-negative
(σ ≥ 0). If σ = 0 in all of Ω, then (1) coincides with the classical (undamped) wave
equation.

We will follow the method-of-lines strategy by discretizing (1) in space while
leaving time continuous. This leads to a system of ODEs that we subsequently wish
to solve using a time-stepping algorithm. In this chapter we present two different
methods for the spatial discretization of (1): continuous FE with mass-lumping and
SBP-SAT FD. We argue that both approaches are viable for the wave equation. High-
order FD methods are generally considered efficient for wave propagation problems on
simple to moderately complex domains, where it is feasible to generate high-quality
structured grids. In highly complex geometries however, mesh generation is difficult
enough that the ability to use an unstructured mesh becomes a large advantage,
making FEM an attractive approach.

2.1. SBP-SAT finite difference discretization. To introduce the SBP-SAT
finite difference method [37] we consider (1) in one spatial dimension,

(2)

utt + σut −
(
c2ux

)
x

= f, x ∈ [xL, xR], t ∈ (0, T),
u = gL, x = xL, t ∈ (0, T),
u = gR, x = xR, t ∈ (0, T),
u(·, 0) = u0, ut(·, 0) = v0, x ∈ [xL, xR] .

We first discretize the interval [xL, xR] using the N equidistant grid points,

(3) xj = xL + (j − 1)h, j = 1, . . . , N, h =
xR − xL
N − 1

.

We introduce the discrete solution vector u(t) = [u1(t), . . . , uN (t)]T , where uj(t) ≈
u(xj , t). To discretize the spatial derivative we use a narrow-stencil summation-by-

parts operator D
(c2)
2 , which approximates ∂

∂xc
2 ∂
∂x . D

(c2)
2 is said to have the SBP

property if [31]

(4) D
(c2)
2 = H−1(−Mc2 + B̄c2S)

where H = HT > 0, Mc2 = MT
c2 ≥ 0, S approximates the first derivative at the

boundaries, and B̄c2 = diag
(
−c2(x1), 0, . . . , 0, c2(xN)

)
.

The SBP-SAT discretization of (2) can be written as

(5)

d2u

dt2
+ Λσ

du

dt
−D(c2)

2 u = f+H−1

[
(B̄c2S)T − Γc2(x1)

αh

]
e1(eT1 u− gL)

+H−1

[
(B̄c2S)T − Γc2(xN)

αh

]
eN (eTNu− gR) ,

where f(t) = [f(x1, t), . . . , f(xN , t)]
T , Λσ = diag (σ(x1), . . . , σ(xN)), and {ei}Ni=1 is

the standard basis in RN . The SAT penalty terms that impose the Dirichlet boundary
conditions are written in the right-hand side of (5). Here α depends on the order of
the SBP operator (but not on h) and Γ is a penalty parameter. Mattsson et. al [30]
showed that the scheme (5) is stable if Γ ≥ 1. Their numerical experiments further

4 MARTIN ALMQUIST, MICHAELA MEHLIN

indicate that Γ = 1.2 is a suitable choice when considering both accuracy and stiffness;
hence we use Γ = 1.2 in this paper.

The scheme (5) can be written as

(6)
d2u

dt2
(t) + D

du

dt
(t) + Au(t) = R(t)

with

D = Λσ,

A = −D(c2)
2 −H−1

[
(B̄c2S)T − Γc2(x1)

αh

]
e1e

T
1 −H−1

[
(B̄c2S)T − Γc2(xN)

αh

]
eNeTN ,

R = f −H−1

[
(B̄c2S)T − Γc2(x1)

αh

]
e1gL −H−1

[
(B̄c2S)T − Γc2(xN)

αh

]
eNgR .

It is straightforward to extend the scheme (5) to rectangular domains in n dimensions
using tensor products. The extension to general curvilinear coordinates is more in-
volved [40], but the resulting semi-discrete problem can still be written in the form of
(6).

One way to introduce local grid refinement is to divide the computational do-
main into blocks and use different grid sizes in each block. The SBP-SAT method
for the wave equation was first extended to multi-block domains in [29]. At the block
interfaces, SAT penalty terms similar to the ones that impose the Dirichlet boundary
conditions in (5) are used to impose interface conditions (continuity of the solution
and its derivative across the interface) in a stable manner. In one dimension this is
relatively straightforward, but in higher dimensions there is the additional complica-
tion that the grids do not conform at the interfaces between coarse and fine blocks.
Treating non-conforming grid interfaces requires special operators that transfer the
solution between coarse and fine grids. The interpolation operators constructed in
[28] and the projection operators in [27] are both provably stable for first order hy-
perbolic systems. It was recently shown [41] that the projection and interpolation
operators both lead to stable discretizations also of the second order wave equation,
in combination with SBP operators with up to 4th order accurate interior stencils.
In this paper we use the interpolation operators and do not consider higher than 4th
order spatial accuracy; thus the spatial discretizations are stable. When employing
the interpolation operators the semi-discrete system can still be written in the form
(6). Thus, for our purposes it suffices to focus on the time-integration of (6).

2.2. Continuous finite element methods. Various FEM are available for the
spatial discretization of (1). For instance, the standard H1-conforming FEM with
mass-lumping starts from the weak formulation: Find u : [0, T]→ H1

0 (Ω) such that

(utt, v) + (σut, v) + (c∇u, c∇v) = (f, v) ∀ v ∈ H1
0 (Ω), t ∈ (0, T),

u|t=0 = u0 in Ω,(7)

ut|t=0 = v0 in Ω,

where (·, ·) denotes the standard inner product on L2(Ω)

(w, v) =

∫
Ω

w(x)v(x) dx.

We assumed here that g = 0, i.e. we deal with homogeneous Dirichlet boundary
conditions. The extension to nonzero g is, however, not difficult. For σ = 0 (7)

MULTI-LEVEL LOCAL TIME-STEPPING 5

reduces to the variational formulation of the classical wave equation. Next, we consider
a family of shape-regular meshes {Th}h that each partition Ω into disjoint elements
K, i.e. Ω = ∪K∈ThK; for simplicity, we assume that Ω is polygonal. The diameter of
element K, a triangle or a quadrilateral in two space dimensions, and a tetrahedron
or hexahedron in three dimensions, is denoted by hK ; hence, the mesh size, h, is given
by h = maxK∈Th hK . We also let Vh ⊂ H1

0 (Ω) denote the finite dimensional subspace

Vh = {v ∈ H1
0 (Ω) : v|K ∈ S`(K), ∀K ∈ Th}, ` ≥ 1,

where S`(K) corresponds to the space P`(K) of polynomials of total degree at most
`, if K is a triangle or tetrahedron, or the space Q`(K) of polynomials of maximal
degree ` in each variable, if K is a quadrilateral or hexahedron.

The semi-discrete Galerkin approximation, uh(t) ∈ Vh, is then defined for 0 ≤
t < T by the restriction of (7) to Vh: Find uh : [0, T]→ V h such that

(uhtt, v) + (σuht , v) + (c∇uh, c∇v) = (f, v) ∀ v ∈ V h , t ∈ (0, T) ,

uh(·, 0) = Πhu0 , u
h
t (·, 0) = Πhv0 .

(8)

Here, Πh denotes the L2-projection onto V h.
Let u(t) ∈ RN denote the coefficients of uh(t) with respect to the standard La-

grangian basis {φi}Ni=1 of Vh. Then (8) is equivalent to the second-order system of
ODEs

M
d2u

dt2
(t) + Mσ

du

dt
(t) + K u(t) = R̃(t) , t ∈ (0, T),

Mu(0) = uh0 , M
du

dt
(0) = vh0 ,

(9)

where uh0 , vh0 are suitable approximations of the initial conditions. Moreover, the mass
matrix, M, and the stiffness matrix, K, are given by

Mij = (φj , φi), Kij = (c∇φj , c∇φi);

the matrix Mσ also corresponds to a mass matrix with weight σ. The matrix M is
sparse, symmetric and positive definite, whereas the matrices K and Mσ are sparse,
symmetric but, in general, only positive semi-definite.

Even though explicit numerical time integration may be applied directly to (9),
every time-step then requires the solution of a linear system involving M or the
multiplication with the inverse of M, which need no longer be sparse. To avoid
that computational work, various mass-lumping techniques have been developed [7,
32], which replace M by a diagonal approximation without ruining the accuracy
[3]. Alternatively, the spectral element method [4, 26] and the symmetric interior
penalty DG method [18] both waive the need for mass-lumping altogether: The former
inherently leads to a diagonal mass matrix, whereas the latter leads to a block-diagonal
mass matrix with block size equal to the number of degrees of freedom per element.
Thus, both mentioned alternative discretizations also lead to (9) with an essentially
diagonal mass matrix M.

Since M in (9) is diagonal, the matrix M−1 is immediately available. Then,
multiplication of (9) by M−1 yields

d2u

dt2
(t) + D

du

dt
(t) + Au(t) = R(t),

6 MARTIN ALMQUIST, MICHAELA MEHLIN

with

D = M−1Mσ, A = M−1K, R(t) = M−1R̃(t),

which is of the same form as (6).
In order to apply an RK type LTS scheme we first need to rewrite (6) as a first-

order system

dy

dt
(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 ,
(10)

where we have introduced

y(t) =

 u(t)
du

dt
(t)

 , B =

(
0 I
−A −D

)
, F(t) =

(
0

R(t)

)
.

3. LTS Methods of Runge-Kutta Type. Before deriving the multilevel al-
gorithm in Section 4 we recall the LTS-RK methods proposed in [17]. We introduce a
slightly modified notation, which may seem overly complicated here but will simplify
the extension of the LTS scheme to multiple refinement levels later. In [17], con-
tinuous FE and nodal DG discretizations were considered and it was shown that the
LTS-RK methods retain the optimal CFL-condition when combined with these spatial
discretizations. In Section 3.2 we investigate the stability properties of the LTS-RK
schemes when combined with SBP-SAT FD discretizations. The observations from
this section will be used later when we combine SBP-SAT FD with the MLTS-RK
schemes in Section 6.

3.1. Explicit LTS-RK schemes. The LTS-RK methods are based on the clas-
sical RK schemes [20]. Let yn denote the numerical approximation of the exact solu-
tion y(tn) at time tn = n∆t. A general explicit RK method with s stages (hereafter
denoted an RKs method) applied to (10) yields

k1 = Byn + F(tn) ,

k2 = B(yn + ∆t a21k1) + F(tn + c2∆t) ,

...

ks = B

(
yn + ∆t

s−1∑
i=1

asiki

)
+ F(tn + cs∆t) ,

yn+1 = yn + ∆t

s∑
i=1

biki .

(11)

The constants aij , bi, and ci, with c1 = 0, uniquely identify the RK method. Let
further {c̃1, . . . , c̃s0} ⊂ {c1, . . . , cs} be the maximal subset of all coefficients ci such
that no two are identical, i.e. c̃i 6= c̃j if i 6= j.

To derive LTS-RK methods for the efficient numerical solution of (10) Grote et
al. [17] introduce a modified problem, which is subsequently solved from tn to tn+1 by
applying the RK scheme (11) with a smaller time-step. To derive the modified problem
they introduce a projection matrix P1, which is diagonal with diagonal entries equal

MULTI-LEVEL LOCAL TIME-STEPPING 7

to one exactly where the fine unknowns are located and zeros otherwise. The exact
solution and right-hand side of (10) are then partitioned into coarse and fine parts,

y(t) = (I−P1)y(t) + P1y(t) , F(t) = (I−P1)F(t) + P1F(t) ,

where (I−P1)y(t) is zero in the fine region and P1y(t) is zero in the coarse region.
Based on this partitioning one can derive the modified equation

(12)

dy[1]

dt[1]
(t[1]) = B(I−P1)

s−1∑
j=0

αj

(
t[1]
)j (

Bjyn +

j∑
`=1

Bj−`q
(`−1)
0 (tn)

)
+ (I−P1)q0(tn + t[1]) + BP1 y[1](t[1]) + P1F(tn + t[1]) ,

y[1](0) = yn ,

where

αj =
j + 1

j!

s∑
i=1

bic
j
i .

Here q0(t) denotes the interpolation polynomial of degree s0 − 1 going through the
points (tn + ci∆t,F(tn + ci∆t)), i = 1, . . . , s. We can write (12) in the form of (10)

dy[1]

dt[1]
(t[1]) = B1y

[1](t[1]) + F1(t[1]) , t[1] ∈ (0,∆t) ,

y[1](0) = yn ,

(13)

with matrix and right-hand side defined as

B1 = BP1 ,

F1(t[1]) =

s−1∑
j=0

(
t[1]
)j

w
[1]
j + (I−P1)q0(tn + t[1]) + P1F(tn + t[1]) ,

where

w
[1]
j = αjB(I−P1)

(
Bjyn +

j∑
`=1

Bj−`q
(`−1)
0 (tn)

)
.

To advance the numerical solution from time tn to tn+1 = tn + ∆t, the LTS-RK
algorithm solves the modified equation (13) with the underlying RK method but with
a smaller time-step ∆t[1] = ∆t/p1, where p1 > 1 is an integer. If the smallest mesh size
in the fine region is p̃1 times smaller than the smallest mesh size in the coarse region,
one picks p1 = dp̃1e, to ensure that the CFL condition is not violated. The most
challenging case for the LTS-RK method is when p̃1 is an integer so that p1 = p̃1. In
this case, both the global and local time-steps are exactly on the CFL stability limit.
In the numerical experiments in Section 3.2 we shall only consider this case; hence we
do not distinguish between p1 and p̃1. For details on the derivation of (12) and on
the algorithm we refer to [17].

Remark 1. Note that the CFL condition for the classical RK2 scheme is ∆t ≤
Ch4/3 [11], which is stronger than for most higher order RKs methods. For the LTS-
RK2 method to conform to this stability restriction we have to choose ∆t[1] = ∆t/dp̂e
with p̂ = p

4/3
1 .

8 MARTIN ALMQUIST, MICHAELA MEHLIN

3.2. LTS-RK combined with SBP-SAT FD. We now study the combination
of SBP-SAT FD in space and LTS-RK methods in time. We consider (1) with c = 1,
σ = 0.1, and f = 0 on the interval Ω = [0, 6]. We divide Ω into three equal parts and
use the grid spacing hcoarse in the left and right intervals, [0, 2] and [4, 6], referred to as
the coarse region. In the fine region [2, 4] we use the grid spacing hfine = hcoarse/p1.
We combine the LTS approach based on the RK2 method with the second-order
accurate SBP-SAT discretization and the RK3 and RK4 type LTS methods with the
fourth-order accurate SBP-SAT discretization. Butcher tableaus of the methods used
here can be found in Table 4.

To determine the stability range of the LTS schemes we rewrite them as one-step
schemes,

(14) yn+1 = CLTS−RKsyn

and monitor the spectral radius ρ (CLTS−RKs) for different time-steps ∆t. The
method is stable if ρ (CLTS−RKs) ≤ 1. We denote the maximal permissible time-
step by ∆tp1 . We say that the CFL condition of the LTS method is optimal if
∆tp1 = ∆tRKs, where ∆tRKs denotes the largest permissible time-step of the under-
lying RK-method on an equidistant grid of size hcoarse. In [17] both continuous FE
and nodal DG discretizations led to optimal CFL conditions for the LTS-RK methods.

Figure 1 (a) shows ρ (CLTS−RK4) for different time-steps, when p1 = 2. We
observe that the scheme is unstable for ∆t/∆tRK4 > 0.8. That is, we are restricted to
approximately 80% of the optimal time-step, which is unsatisfactory. To overcome this
restriction we consider the technique of overlapping, which was successfully used in
[13] for LTS methods based on the “leap-frog” scheme for second order wave equations.
By overlapping we mean that we slightly enlarge the region where the small time-step
is used by setting the corresponding entries in P1 to one. Thus, the local time-step
is applied also to a few coarse grid points adjacent to the fine region, see Figure 2.
When using one grid point of overlap, we observe in Figure 1 (b) that we obtain the
optimal CFL condition. Figure 3 shows ρ (CLTS−RK2) and ρ (CLTS−RK3), using one
grid point of overlap. Again, the CFL conditions are optimal.

∆t / ∆t
RK4

0 0.2 0.4 0.6 0.8 1

ρ
 (

C
L
T

S
-R

K
4
)

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

(a)

∆t / ∆t
RK4

0 0.2 0.4 0.6 0.8 1

ρ
 (

C
L
T

S
-R

K
4
)

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

(b)

Fig. 1. The spectral radius of CLTS−RK4 vs. ∆t/∆tRK4 using (a) no overlap and (b) one grid
of point overlap.

To investigate the effect of a larger p1, Table 1 shows ∆tp1/∆tRKs for s = 2, 3, 4
and various p1, again using one grid point of overlap. The LTS-RK2 and LTS-RK3

MULTI-LEVEL LOCAL TIME-STEPPING 9

2 grid points of overlap

1 grid point of overlap

0 grid points of overlap

Fig. 2. By overlapping, we mean that the local time-step is used also in a few grid points
in the coarse region, adjacent to the fine region. Notice that the discrete solution is duplicated at
the interface between coarse and fine regions, i.e., there are two grid points at the same physical
location. Here they are visualized with a small separation for illustrative purposes.

∆t / ∆t
RK2

0 0.2 0.4 0.6 0.8 1

ρ
 (

C
L
T

S
-R

K
2
)

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

(a)

∆t / ∆t
RK3

0 0.2 0.4 0.6 0.8 1

ρ
 (

C
L
T

S
-R

K
3
)

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

(b)

Fig. 3. The spectral radius of (a) CLTS−RK2 vs. ∆t/∆tRK2 and (b) CLTS−RK3 vs.
∆t/∆tRK3, using one grid point of overlap.

methods retain the optimal CFL condition regardless of p1. The LTS-RK4 method,
however, exhibits a decrease in CFL number with increasing p1. The solution to this
problem is to use more overlap. Table 2 shows the ratio ∆tp1/∆tRK4 corresponding
to different amounts of overlap. We observe that 2 grid points of overlap yields the
optimal CFL condition up to p1 = 5 and 3 grid points of overlap yields the optimal
CFL condition up to p1 = 30. Based on this study we conclude that, unless extreme
refinement ratios are considered, suitable overlaps are 1 grid point for LTS-RK2 and
LTS-RK3 and 3 grid points for LTS-RK4. We will use these overlaps in subsequent
numerical experiments with the multilevel schemes.

To illustrate the effect of damping on the stability we present the ratio ∆t2/∆tRKs
(s = 2, 3, 4) for varying σ in Table 3. All LTS schemes yield the optimal CFL condition
independently of σ > 0. When σ = 0 the equation (1) is undamped, which makes
energy-conserving time-marching schemes such as the standard leap-frog scheme more
attractive than RK methods. High-order energy-conserving MLTS methods based on
the leap-frog scheme were derived in [14].

Numerical experiments in [17] confirmed the expected convergence rates in space
and time for the LTS-RK schemes when combined with both continuous and discon-
tinuous FEM. Our experiments show the expected rates also for the combination of
LTS-RK and SBP-SAT FD, but we omit the results here. Convergence results for the
MLTS-RK schemes are presented in Section 6.

10 MARTIN ALMQUIST, MICHAELA MEHLIN

p1 = 2 p1 = 3 p1 = 5 p1 = 11 p1 = 15 p1 = 20 p1 = 30
LTS-RK2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LTS-RK3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
LTS-RK4 1.0 1.0 0.73 0.40 0.34 0.54 0.38

Table 1
Stability of the LTS-RKs schemes for s = 2, 3, 4: the ratio ∆tp1/∆tRKs is shown for varying

p1, using an overlap of 1 grid point.

Overlap p1 = 2 p1 = 3 p1 = 5 p1 = 11 p1 = 15 p1 = 20 p1 = 30
1 grid point 1.0 1.0 0.73 0.40 0.34 0.54 0.38
2 grid points 1.0 1.0 1.0 0.89 0.77 0.85 0.77
3 grid points 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2
Stability of the LTS-RK4 scheme, using 1, 2, or 3 grid points of overlap: the ratio ∆tp1/∆tRK4

is shown for varying p1.

4. Multi-level LTS-RK. The LTS-RK methods in [17] are limited to one local
time-step size. While this is sufficient when all mesh elements are naturally categorized
as either coarse or fine, there are situations where it is suboptimal. If, for example, a
locally refined region itself contains a locally refined region, any combination of global
time-step ∆t and local time-step ∆t[1] will correspond to an unnecessarily small time-
step in some part of the domain. This can severely affect the efficiency of the LTS-RK
scheme. Here, we shall derive MLTS schemes that allow for an appropriate time-step
on each level of refinement. We present the derivation in Section 4.1 and discuss in
Section 4.2 some details that are useful when implementing the MLTS-RK method.

4.1. Derivation of the MLTS-RK scheme. From now on we assume that
we can distinguish Lmax + 1 levels of refinement in our mesh. That is, we can divide
the mesh into Lmax + 1 levels or tiers of like-sized elements. We number the levels
from 0 to Lmax, with 0 corresponding to the coarsest level. To each refined level we
can associate a refinement ratio pL, L = 1, . . . , Lmax, where pL is determined by the
ratio between the smallest mesh sizes of levels L − 1 and L. Thus, the mesh size on
the finest level is approximately p1 · p2 · . . . · pLmax

times smaller than the mesh size
on the coarsest level. We further introduce projection matrices PL, L = 0, . . . , Lmax,
where PL selects all unknowns that belong to the levels L,L+ 1, . . . , Lmax. Thus, the
projection matrices have the property

(15) PLPL+i = PL+i if i ≥ 0.

By definition P0 selects all elements, i.e. P0 = I.

Remark 2. Similar to p1 in the LTS case, the pi all need to be integers, whereas
the mesh size ratios p̃i are not, in general. To avoid violating the CFL condition, one
picks pi = dp̃ie. For simplicity we shall avoid distinguishing between pi and p̃i in what
follows.

To derive MLTS-RK methods, we use LTS-RK methods as a starting point. LTS-RK
methods rely on constructing the modified ODE (13), i.e.,

dy[1]

dt[1]
(t[1]) = B1y

[1](t[1]) + F1(t[1]) , t[1] ∈ (0,∆t) ,

y[1](0) = yn ,

(16)

MULTI-LEVEL LOCAL TIME-STEPPING 11

σ LTS-RK2 LTS-RK3 LTS-RK4
0.001 1.0 1.0 1.0
0.01 1.0 1.0 1.0
0.1 1.0 1.0 1.0
1 1.0 1.0 1.0
10 1.0 1.0 1.0

Table 3
Stability of the LTS-RKs schemes for s = 2, 3, 4 and p1 = 2, using 1 grid point overlap: the

ratio ∆t2/∆tRKs is shown for varying σ.

and solving this modified problem using p1 time steps of size ∆t[1] with the underlying
RKs method, as described in Section 3. However, in the case of multiple levels of
refinement the time-step ∆t[1] is of course too large on the finer levels 2, . . . , Lmax.
Recall that we split the unknowns with respect to P1, which selects the degrees of
freedom not only on level 1, but also on all finer levels. To derive the MLTS-RKs
method, we shall therefore apply the LTS-RK approach to the modified problem (16).
Because our aim is to use an even smaller time-step on the elements belonging to level
2, we split the unknowns with respect to P2 this time. Since (16) is of the same form
as (10), we can use (13) to infer that the modified problem corresponding to (16) is

dy[2]

dt[2]
(t[2]) = B2y

[2](t[2]) + F2(t[2]) , t[2] ∈ (0,∆t[1]) ,

y[2](0) = y[1]
n1
,

(17)

where

B2 = B1P2 ,

F2(t[2]) =

s−1∑
j=0

(
t[2]
)j

w
[2]
j + (I−P2)q1(t[1]

n1
+ t[2]) + P2F1(t[1]

n1
+ t[2]) ,

with

w
[2]
j = αjB1(I−P2)

(
Bj

1y
[1]
n1

+

j∑
`=1

Bj−`
1 q

(`−1)
1 (t[1]

n1
)

)
.

Here q1(t[1]) denotes the interpolation polynomial of degree s0 − 1 going through the

points
(
t
[1]
n1 + ci∆t

[1],F1

(
t
[1]
n1 + ci∆t

[1]
))

, i = 1, . . . , s, where t
[1]
n1 = n1∆t[1] is the

current time on level 1 and y
[1]
n1 the corresponding numerical solution. Notice that

the modified problem for y[2] is posed on the time interval (0,∆t[1]). In the case
Lmax = 2, level 2 is the finest level. To advance the solution on levels 1 and 2 one
time-step of size ∆t[1], we solve (17) using p2 time steps of size ∆t[2] = ∆t[1]/p2. We
repeat that p1 times to advance the solution of the original ODE (10) from tn to tn+1.

For the case Lmax > 2, we note that the problem (17) is again of the same form as
(10). We may thus split the unknowns with respect to P3 and derive a new modified
problem, and so on. Repeating this process L times in total gives us the modified
equation corresponding to level L,

12 MARTIN ALMQUIST, MICHAELA MEHLIN

dy[L]

dt[L]
(t[L]) = BLy[L](t[L]) + FL(t[L]) , t[L] ∈ (0,∆t[L−1]) ,

y[L](0) = y[L−1]
nL−1

,

(18)

where

BL = BL−1PL ,

FL(t[L]) =

s−1∑
j=0

(
t[L]
)j

w
[L]
j + (I−PL)qL−1(t[L−1]

nL−1
+ t[L])

+ PLFL−1(t[L−1]
nL−1

+ t[L]) ,

(19)

with

w
[L]
j = αjBL−1(I−PL)

(
Bj
L−1y

[L−1]
nL−1

+

j∑
`=1

(BL−1)
j−`

q
(`−1)
L−1 (t[L−1]

nL−1
)

)
,

and qL−1 is the interpolation polynomial of FL−1 in the quadrature points(
t[L−1]
nL−1

+ ci∆t
[L−1],FL−1

(
t[L−1]
nL−1

+ ci∆t
[L−1]

))
, i = 1, . . . , s .

Here, t
[L−1]
nL−1 denotes the current time on level L−1, with the convention that t

[0]
n0 = tn.

The corresponding numerical solution y
[L−1]
nL−1 is used as initial condition for the new

modified ODE (18).
The multi-level approach reduces to solving (18) at the final level L = Lmax with

the underlying RKs method using pL fine time-steps of size ∆t[L]. This gives us the
update of the numerical solution at level L−1. If we repeat that process pL−1 times in
total, we get an update of the solution on level L−2, etc. Due to the inherent recursion
over the levels, the MLTS-RK algorithms can be formulated as recursive functions –

see Algorithm 1. The function call y
[L]
nL+1 = MLTS-RK(∆t[L],L + 1, y

[L]
nL , BL, FL)

advances the numerical solution on levels L,L + 1, . . . , Lmax one step of size ∆t[L].
Thus, the call yn+1 = MLTS-RK(∆t, 1, yn, B, F) advances all unknowns one global
time-step of size ∆t, via recursive calls to the MLTS-RK function. The recursion
terminates when the finest level is reached, i.e. when L = Lmax. In this case, the
MLTS-RK function calls the RK function in Algorithm 2, to apply the underlying RK
method to the modified problem for y[Lmax].

A schematic description of the MLTS-RK algorithm in the special case Lmax = 2,
p1 = 3, p2 = 2 is given in Figure 4. To advance all unknowns one global time-
step of size ∆t, steps 1-10 must be completed. Figure 4 illustrates the state that the
unknowns are in when only steps 1-6 have been completed: the unknowns in the finest
level (level 2) have been advanced 3 time-steps of size ∆t[2] = ∆t/6, the unknowns in
the intermediate level (level 1) have been advanced one step of size ∆t[1] = ∆t/3, and
the coarsest unknowns (level 0) have not yet been advanced at all. The colors black
and grey indicate whether the solution at that time-step has been computed or not.

Whenever the unknowns y
[L]
nL on level L < Lmax have been advanced, one uses (19) to

update BL and FL. Notice, however, that BL does not change in between time-steps
and thus one could make the algorithm more efficient by precomputing the BL once
and for all.

MULTI-LEVEL LOCAL TIME-STEPPING 13

Algorithm 1 y = MLTS-RK(∆t,L, y, B, F)

Compute new B and F with (19).
if L < Lmax then

for nL = 0, . . . , pL − 1 do
y = MLTS-RK(∆t/pL,L+ 1, y, B, F)

end for
else

for nL = 0, . . . , pL − 1 do
y = RK(∆t/pL, y, B, F)

end for
end if
return y

Algorithm 2 y = RK (∆t, y, B,F)

for r = 1, . . . , s do

kr = B
(
y + ∆t

∑r−1
i=1 ariki

)
+ F(t

[Lmax]
nLmax

+ cr∆t)

end for
Compute y = y + ∆t

∑s
i=1 biki.

4.2. Details on implementation. To implement the MLTS-RK method effi-
ciently, it is important to utilize the sparsity of the matrices with which one needs to
perform matrix-vector multiplications. We shall in this subsection expand the terms
appearing in (18) to reveal the sparsity patterns of the matrices. We will make use of
the following notation:

Tλ,L =

L∑
`=λ

t[`]n`
, βki =

k!

(k − i+ 1)!
.

Due to property (15), we have

(20) BL = BL−1PL = BL−2PL−1PL = BP1 · · ·PL = BPL .

By straightforward but tedious algebra, one can also show (see Appendix B) that

(21)

FL(t[L]) =

s−1∑
j=0

L−1∑
`=0

(
t[L] + T`+1,L−1

)j
w

[`+1]
j +

+ PLF
(
t[L] + T0,L−1

)
+

L−1∑
`=0

(P` −P`+1)r`

(
t[L] + T0,L−1

)
,

where the r` are interpolation polynomials of F in the quadrature points(
T0,` + ci∆t

[`],F
(
T0,` + ci∆t

[`]
))

, i = 1, . . . , s ,

and

(22)

w
[`+1]
j = αjB(P` −P`+1)

[
(BP`)

jy[`]
n`

+

j∑
λ=1

(BP`)
j−λr

(λ−1)
` (T0,`)

+

j∑
i=1

(BP`)
j−i

s−1∑
k=i−1

βki
∑̀
λ=1

(Tλ,`)
k−i+1

w
[λ]
k

]
.

14 MARTIN ALMQUIST, MICHAELA MEHLIN

tn + �t

tn

Level 1 (intermediate)Level 0 (coarse) Level 2 (fine)

�t[1] = �t/3

�t[2] = �t[1]/2

t

1 2 3

5

8

4

6

7

9

10	

Fig. 4. The multi-level algorithm in the case Lmax = 2, p1 = 3, p2 = 2. Arrows indicate
the flow of information. Completing steps 1-10 corresponds to advancing all unknowns one global
time-step of size ∆t.

Based on the modified equation (18) and the relations (20)-(22), we present a more
detailed version of the MLTS-RK algorithm in Algorithm 3. As in Algorithm 1, it is

natural to use recursion over the number of levels. The function call y
[L]
nL+1 = MLTS-

RK(∆t[L],L + 1, y
[L]
nL) advances the numerical solution on levels L,L + 1, . . . , Lmax

one step of size ∆t[L] . The MLTS-RK function accomplishes this by calling itself
recursively. The recursion terminates when the finest level is reached, i.e. when L =
Lmax. In this case, the MLTS-RK function calls the RK function in Algorithm 4, to
advance the finest level in time. Recall that time-stepping the unknowns on level
Lmax is performed by applying the underlying RK method to the modified problem
for y[Lmax], which is precisely what Algorithm 4 does.

At level L in the MLTS-RK algorithm, one first computes a polynomial rL that
approximates F in the nodes(

T0,L + ci∆t
[L],F

(
T0,L + ci∆t

[L]
))

, i = 1, . . . , s .

Next, one computes the w
[L+1]
j , j = 0, . . . , s−1. In this step, the work corresponding

to multiplications by B is performed. Notice that the factor (PL−PL+1) in (22) zeros
all matrix elements not corresponding to the unknowns on or directly next to level
L. Thus, multiplications by B(PL − PL+1) are much cheaper than multiplications
by B, for instance. This shows that operations corresponding to the time-step of size
∆t[L] only affect the unknowns on or directly adjacent to level L, which is precisely the
property that an efficient MLTS algorithm should have. Roughly speaking, computing

the w
[L+1]
j for j = 0, . . . , s− 1 corresponds to advancing the unknowns on level L one

time-step of size ∆t[L]. The w:s and the r:s are then passed on to finer levels and
used in subsequent calculations. For simplicity we have assumed that Lmax, the PL,

the pL, the rL, and the w
[L]
j are declared as global variables in the algorithms, but

they could as well be passed as function parameters.

MULTI-LEVEL LOCAL TIME-STEPPING 15

Algorithm 3 ynew = MLTS-RK(∆t,L, yold)

Set ynew = yold
Compute interpolation polynomial rL(t[L]) going through
(T0,L + ci∆t,F ((T0,L + ci∆t)), i = 1, . . . , s.
for j = 0, . . . , s− 1 do

Compute

w
[L+1
j = αjB(PL −PL+1)

[
(BPL)jyold +

j∑
λ=1

(BPL)j−λr
(λ−1)
L (T0,L)

+

j∑
i=1

(BPL)j−i
s−1∑
k=i−1

βki

L∑
λ=1

(Tλ,L)
k−i+1

w
[λ]
k

]

end for
if L < Lmax then

for nL = 0, . . . , pL − 1 do
ynew = MLTS-RK(∆t/pL,L+ 1, ynew)

end for
else

for nL = 0, . . . , pL − 1 do
ynew = RK (∆t/pL,L, ynew)

end for
end if
return ynew

Algorithm 4 ynew = RK (∆t,L, yold)

for r = 1, . . . , s do

kr =

s−1∑
j=0

L−1∑
`=0

(cr∆t+ T`+1,L)
j
w

[`+1]
j +

L−1∑
`=0

(P` −P`+1)r` (cr∆t+ T0,L)

+ PLF (cr∆t+ T0,L) + BPL

(
yold + ∆t

r−1∑
i=1

ariki

)
, r = 1, . . . , s,

ynew = yold + ∆t

s∑
i=1

biki.

end for

5. Analysis of Accuracy and Cost. In this section we present some theoretical
results for the multi-level methods. In Section 5.1 we prove that all MLTS-RKs
methods are accurate of order k, which is the order of the underlying RKs scheme.
In Section 5.2 we calculate the computational cost of the MLTS-RKs methods and
show that the extra cost compared to an ideal method is negligible if the number of
unknowns N is large.

16 MARTIN ALMQUIST, MICHAELA MEHLIN

5.1. Accuracy. Consider our model problem

dy

dt
(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 .
(23)

To prove accuracy we shall need some general assumptions. Again let {c̃1, . . . , c̃s0} ⊂
{c1, . . . , cs} be the maximal subset of all coefficients ci such that no two are identical,
i.e. c̃i 6= c̃j if i 6= j. We assume that s0 ≥ k − 1, i.e. we have enough distinct
notes, a condition fulfilled by standard explicit RK methods. We further assume that
F ∈ Cs0([0, T]).

To prove that the MLTS-RK methods are accurate of order k we shall use the
accuracy of the LTS-RK schemes, proven in [17]:

Proposition 1. Let y ∈ Ck+1(0, T) be the solution of (23) and yn+1 the solution
obtained with an LTS-RK method given the exact solution at time tn (defined by
Algorithm 1 in [17] with yn = y(tn)). Then ‖y(tn+1) − yn+1‖∞ = O(∆tk+1), i.e.,
the LTS-RK method is kth-order accurate.

We are now ready to show that the MLTS-RK methods are accurate of order k,
independently of the number of levels L. From now on MLTS-RK(L) denotes the
multilevel scheme with L refinement levels.

Theorem 2. Let y ∈ Ck+1(0, T) be the exact solution of (23) and yn+1 the
numerical solution obtained with an MLTS-RK(L) method given the exact solution at
time tn, i.e., yn+1 = MLTS-RK(∆t, 1,y(tn),B,F) (see Algorithm 1). Then ‖y(tn+1)−
yn+1‖∞ = O(∆tk+1), i.e., the MLTS-RK(L) method is kth-order accurate.

Proof. The proof relies on induction over L. In the induction hypothesis we
assume that the result holds for L−1 levels, i.e., the MLTS-RK(L−1) method is kth
order accurate.

As in [17] we split the error into two parts

(24) ‖y(tn+1)− yn+1‖∞ ≤ ‖y(tn+1)− y[1](∆t)‖∞ + ‖y[1](∆t)− yn+1‖∞ ,

where y(tn+1) denotes the exact solution of (23) at time tn+1 and y[1](∆t) the exact
solution of the first modified equation (16) at time ∆t. The estimate for the first error
term,

(25) ‖y(tn+1)− y[1](∆t)‖∞ = O(∆tk+1) ,

follows directly from the proof of Proposition 1. To estimate the second term, we
recall that yn+1 is the numerical solution of (23) with the MLTS-RK(L) method.
Equivalently, we can interpret it as the numerical solution of the modified equation
(16) with the MLTS-RK(L− 1) method. Thus, by the induction hypothesis

(26) ‖y[1](∆t)− yn+1‖∞ = O(∆tk+1) .

Hence,

(27) ‖y(tn+1)− yn+1‖∞ ≤ O(∆tk+1) +O(∆tk+1) = O(∆tk+1) ,

i.e., the L-level method is kth order accurate.
Now consider the base case L = 1. For L = 1 the multilevel algorithm reduces

to the LTS-RK method and the estimate (26) follows as in [17], i.e., yn+1 is the
numerical solution of (16) with the underlying kth order RK method and thus (26)
holds. By induction, it follows that the MLTS-RK(L) method is kth order accurate
for L = 1, 2,

MULTI-LEVEL LOCAL TIME-STEPPING 17

5.2. Computational cost. In this section we analyze the computational cost of
the methods derived in Section 4. The theoretical speed-up of the LTS-RKs method
over a standard RKs method with a small time-step in the entire computational
domain was discussed in [17] for the case where F(t) = 0. Here, we extend the
calculations to nonzero F(t). We further investigate how the degrees of freedom in
the border region between coarse and fine elements contribute to the computational
cost. For simplicity we shall ignore the cost of vector additions and scalar-vector
multiplications. We also assume that the spatial discretization is local in the sense
that in each multiplication by B, each unknown is only affected by other unknowns
within a radius a. This is the case for both FD and FE methods. In one spatial
dimension, a equals the half-bandwidth of A in (6). We will first consider only one
level of refinement, i.e., the LTS-RK algorithm, and then move on to the multilevel
case.

A single refinement level

We introduce the notation:
• p1: refinement ratio
• N : number of degrees of freedom
• r: percentage of fine elements
• bn: cost of multiplying an n× 1 vector by B
• a: the number of elements that information can travel in one multiplication

by B
• fn: cost of evaluating F at n points
• d: number of spatial dimensions

To advance the solution one time-step, an RKs method requires s multiplications
by B and s0 evaluations of F. An ideal time-stepping method based on RKs would
require s multiplications by B and s0 evaluations of F for the (1− r)N unknowns in
the coarse region. The cost of one multiplication by B is b(1 − r)N and the cost of
one evaluation of F is f(1 − r)N . Thus, the total cost corresponding to the coarse
region is sb(1 − r)N + s0f(1 − r)N . For the rN unknowns in the fine region there
would be p1s multiplications by B and p1s0 evaluations of F. Thus, the total cost of
an ideal time-stepping method would be

(28) Cideal = sb(1− r)N + s0f(1− r)N + p1sbrN + p1s0frN .

We shall calculate the cost of the LTS-RKs algorithm and compare it with Cideal.
Since we expect any LTS scheme based on an RKs method to be at least as expensive
as the ideal method, we will say that the LTS-RKs algorithm is efficient if the extra
cost compared to Cideal is small.

In the LTS-RKs algorithm we need to compute

(29) w
[1]
j = αjB(I−P1)

(
Bjyn +

j∑
l=1

B(j−l)q
(l−1)
0 (tn)

)
, j = 0, . . . , s− 1 .

While the factor of (I − P1) zeros all entries corresponding to the fine region, the
factor Bj will make information spread from the fine region to the coarse. Thus,
the matrices αjB(I−P1)Bj are nonzero in the coarse region and in a border region
adjacent to the coarse region, which complicates the analysis of the computational
cost. Furthermore, it is not obvious how to compute the w:s most efficiently. We
therefore start by deriving an efficient algorithm, and then analyze the computational

18 MARTIN ALMQUIST, MICHAELA MEHLIN

cost of that algorithm. We introduce a diagonal projection matrix Z with ones and
zeros on the diagonal, such that

(30) (I−P1)BjZ = (I−P1)Bj , j = 0, 1, . . . , s− 1 .

More precisely, we define Z as the matrix with the least number of ones that satisfies
(30). The entries corresponding to the coarse region and a border region around
the interface between the coarse and fine regions will be set to 1, the others to 0.
There are (1− r)N unknowns in the coarse region and the size of the border region is

proportional to (s−1)aN
d−1
d . Notice that the dimension of the border region is d−1,

due to the locality of the spatial discretization. The size of the border region can thus

be bounded from above by γ(s− 1)aN
d−1
d , where the constant γ is independent of N

and is related to the size of the interface between coarse and fine elements. In 1D γ
simply equals the number of interfaces between coarse and fine regions, i.e. if there
is one locally refined region surrounded by coarse region, as in Figure 2, then γ = 2.
In higher dimensions, however, γ depends on the size of the interface surface. The

number of ones in Z is thus approximately (1 − r)N + γ(s − 1)aN
d−1
d . We further

define

(31) Z̃ = Z− (I−P1) .

The matrix Z̃ is very sparse, with only γ(s− 1)aN
d−1
d nonzero entries corresponding

to the border region. Roughly speaking, the nonzero entries in Z̃ correspond to
extra computational cost; an ideal LTS method would have Z̃ = 0. Recall that (in
one dimension) a is the half-bandwidth of the spatial discretization matrix, which
typically increases with the order of accuracy. Thus, the extra cost of the LTS-RKs
method relative to an ideal LTS method typically increases slightly with the order of
the spatial discretization.

Remark 3. It is possible to derive a more efficient algorithm – and thus a sharper
bound on the computational cost – by introducing matrices Zj such that (I−P1)BjZj =
(I−P1)Bj, j = 0, 1, . . . , s− 1. However, since the gain is very slight we opt not to
do this, for ease of notation.

We are now in a position to derive an algorithm that computes the w:s efficiently by

using w
[1]
j to compute w

[1]
j+1, etc. Due to the properties of Z, we have

(32)

w
[1]
j = αjB(I−P1)

(
Bjyn +

j∑
l=1

B(j−l)q
(l−1)
0 (tn)

)

= αjB(I−P1)

(
(BZ)jyn +

j∑
l=1

(BZ)j−lZq
(l−1)
0 (tn)

)
= αjB(I−P1)vj

where we have defined

(33) vj = (BZ)jyn +

j∑
l=1

(BZ)j−lZq
(l−1)
0 (tn) .

MULTI-LEVEL LOCAL TIME-STEPPING 19

We find that the relation between vj+1 and vj is

(34)

vj+1 = (BZ)j+1yn +

j+1∑
l=1

(BZ)j+1−lZq
(l−1)
0 (tn)

= BZ(BZ)jyn + BZ

j∑
l=1

(BZ)j−lZq
(l−1)
0 (tn) + Zq

(j)
0 (tn)

= BZvj + Zq
(j)
0 (tn) .

We also observe that with (31)

(35) w
[1]
j = αjB(I−P1)vj = αjB(Z− Z̃)vj = αj

(
vj+1 − Zq

(j)
0 (tn)−BZ̃vj

)
,

where (34) was used in the last step. Solving (35) for vj+1 yields

(36) vj+1 = α−1
j w

[1]
j + Zq

(j)
0 (tn) + BZ̃vj .

The relations (32) and (36) lead to an efficient algorithm, presented in Algorithm 5,

that computes w
[1]
j for j = 0, . . . , s−1. There are s multiplications by B(I−P1), which

Algorithm 5 Algorithm to compute w:s

Set v0 = yn
Compute w

[1]
0 = α0B(I−P1)v0

for j = 0, . . . , s− 2 do

Compute vj+1 = α−1
j w

[1]
j + Zq

(j)
0 (tn) + BZ̃vj

Compute w
[1]
j+1 = αj+1B(I−P1)vj+1

end for

require sb(1− r)N work in total. The work corresponding to the s−1 multiplications

by BZ̃ is

(s− 1) · bγ(s− 1)aN
d−1
d = (s− 1)2bγaN

d−1
d .

We further need to construct the polynomials Zq
(j)
0 (t). This requires s0 evaluations

of F for (1− r)N + γ(s− 1)aN
d−1
d unknowns, i.e. s0f

(
(1− r)N + γ(s− 1)aN

d−1
d

)
work.

Once the w:s have been computed, it remains to solve the modified ODE (13)
using p1 time steps with the RKs method. In each time step there are s multiplications
by BP, with total cost sbrN . There are also s0 evaluations of F1 = P1F, which cost
s0frN in total. The cost for p1 time-steps in the fine region is p1sbrN + p1s0frN .
Thus, the total cost for the LTS-RKs algorithm is
(37)

CLTS−RK = s0f
(

(1− r)N + γ(s− 1)aN
d−1
d

)
+ sb(1− r)N + (s− 1)2bγaN

d−1
d

+ p1sbrN + p1s0frN .

The extra cost relative to the ideal method is

(38)

CLTS−RK − Cideal
Cideal

=
s0(s− 1)fγaN

d−1
d + γ(s− 1)2baN

d−1
d

s0f(1− r)N + sb(1− r)N + p1sbrN + p1s0frN

=
γa

N1/d
· s0(s− 1)f + (s− 1)2b

s0f(1− r) + sb(1− r) + p1sbr + p1s0fr

20 MARTIN ALMQUIST, MICHAELA MEHLIN

The extra cost compared to the ideal method is negligible if γa << N1/d. Recall that
s0, s, f , a, γ, and b are constants that do not depend on the mesh size. Thus, the
extra cost tends to zero as the mesh is refined.

Multiple levels of refinement

To analyze the multilevel case we introduce the notation
• r`: percentage of unknowns belonging to level `
• p`: refinement ratio between level ` and `− 1, where p0 = 1
• p` = p1p2 · · · p`
• γ`: constant such that size of the border region corresponding to the interface

between levels ` and `+ 1 does not exceed γ`(s− 1)aN
d−1
d

The cost of an ideal time-marching scheme in the presence of Lmax levels of refinement
would be

(39) Cideal =

Lmax∑
`=0

p`s0fr`N + p`sbr`N ,

where r`N is the number of unknowns on level ` and p` is the number of local time-
steps performed on level ` during one global time-step.

For simplicity we shall assume in this section that the different levels are separated,
which means that elements belonging to level ` are not directly adjacent to elements
on level k if |`− k| > 1. We further assume that the levels are well separated, which
means that

(40) P`B(P`−2 −P`−1) = 0 , ` = 2, ..., Lmax .

If the levels are separated they will become well separated eventually as the mesh is
refined, which motivates the second assumption. We would like to stress that the
method in no way relies on the above assumptions – they merely simplify the analysis
of the computational cost. If the levels are well separated the different levels in the
MLTS-RK method decouple and the method becomes simply a recursive application
of the LTS-RK method. The cost corresponding to Lmax levels of refinement is thus
easily deduced from (37):

(41)

CMLTS−RK =

Lmax∑
`=0

p`s0fr`N + p`sbr`N

+

Lmax−1∑
`=0

p`(s− 1)2bγ`aN
d−1
d + p`s0f(s− 1)γ`aN

d−1
d .

Similar to the case with one refinement, the extra cost compared to the ideal method
is negligible if γ`a << N1/d, ` = 0, . . . , Lmax − 1.

Having derived an expression for the cost, we shall now investigate the theoretical
speed-up of the MLTS-RK method over the näıve approach of using the underlying
RK scheme with the tiny time-step ∆t/pLmax

= ∆t/(p1 · . . . · pLmax
) in the entire

computational domain. The näıve approach requires pLmax
time-steps of size ∆t/pLmax

to integrate (10) from tn to tn+1. Thus, the cost is

(42) CRK = pLmax
(s0fN + sbN) .

MULTI-LEVEL LOCAL TIME-STEPPING 21

To simplify further calculations we assume that F = 0. In this case, by (41) and (42),
the ratio of CMLTS−RK over CRK is given by

(43) Q =

∑Lmax

`=0 p`sr` +
∑Lmax−1
`=0 p`(s− 1)2γ`aN

−1/d

pLmax
s

.

We assume that N , a, s, and Lmax are fixed and investigate how Q varies with pi
and ri. For simplicity we set Lmax = 2 and consider 1 spatial dimension, i.e. d = 1.
We assume that the locally refined regions are contiguous such that γ0 = γ1 = 2. We
choose the multilevel scheme based on RK3, which has three stages, and thus s = 3.
If we combine this time integration with mass-lumped P2 FEM in space to keep the
convergence order 3, we can assume that a = 2. We further choose N = 100. If N
increases, the effect of the terms p`(s− 1)2γ`aN

−1/d decreases, as mentioned before,
which means that the efficiency of the MLTS-RK method only improves.

In a first test we fix r1 and r2, and thus r0 = 1− r1− r2, and study how Q varies
with p1 and p2. We see in Fig. 5 that when p1 = p2 = 1, we actually have Q > 1,

Fig. 5. Q for fixed (r1, r2) = (0.2, 0.2), (0.2, 0.05), (0.7, 0.1).

which would imply that the MLTS scheme is less efficient than the näıve approach.
However, recall that when p1 = p2 = 1 there is no mesh refinement, and hence no
reason to use an MLTS method. The extra cost associated with the second sum in
(43) makes the MLTS method slightly more expensive than the standard approach in
this case. However, whenever p1 > 1 or p2 > 1, we observe Q < 1, which means that
the MLTS method is more efficient than the näıve approach. The extra cost relative
to an ideal MLTS method is thus small enough that there is something to gain in
using the MLTS method, even when N is as small as 100. As p1 and p2 increase, so
does the gain in using the MLTS method, for all values of r1 and r2.

In the second test we fix p1 and p2 and investigate how Q varies with r1 and r2.
The results are presented in Figure 6. Since r0 + r1 + r2 = 1, we have r1 + r2 ≤ 1.
It is clear that the MLTS scheme is efficient whenever r1 and r2 are small, i.e., when
most of the elements are coarse. As r1 and r2 increase, the gain in using the MLTS
method decreases. In particular, as r2 approaches one the MLTS method and the näıve
approach are approximately equally efficient, which is to be expected since when r2

is close to one, most of the mesh elements are fine and using the small time-step
everywhere is a reasonable strategy.

6. Numerical Results. In this section we first consider a model problem with
four different levels of refinement in one spatial dimension. We discretize in space
using both SBP-SAT and FEM, and verify the accuracy of the MLTS-RKs schemes
by comparing the results with an exact solution. To show the versatility of the

22 MARTIN ALMQUIST, MICHAELA MEHLIN

Fig. 6. Q for fixed (p1, p2) = (5, 5), (10, 2), (2, 10).

MLTS-RKs methods in more realistic applications, we present in Section 6.2 two 2-
D examples where local mesh refinement is key for efficient simulation. The Butcher
tableaus of the RKs schemes used in the numerical experiments are displayed in Table
4.

6.1. Experiments in 1D. To demonstrate that the MLTS-RKs methods re-
tain the convergence order of the corresponding RKs scheme when combined with
SBP-SAT FD (second and fourth order) and continuous Ps−1 mass-lumped FEM
we consider (1) with c = 1 and σ = 0.1 on the interval Ω = [0, 12]. The initial
data u0(x) = sinπx, v0(x) = 0, homogeneous Dirichlet boundary conditions, and the
source

(44) f(x, t) = sinπx
(
(π2c2 − ω2) cosωt− σω sinωt

)
yield the exact solution

(45) u(x, t) = sinπx cosωt .

In the experiments presented here we choose ω = 5. To generate the computational
grid we start with an initial mesh with mesh size hcoarse on the entire interval [0, 12].
The intervals [0, 2] and [8, 10] remain coarse while we refine all the other intervals in
a first step by a factor of p1. We then further refine the intervals [4, 8] and [10, 12]
by a factor of p2 and finally only the interval [6, 8] with factor p3. The mesh size
in [6, 8] is thus p1p2p3 times smaller than the mesh size in the coarse part. Fig. 7
illustrates what such a mesh could look like. This mesh was designed to test several
different aspects of the multilevel scheme. Notice in particular that the levels are not
separated (as was assumed in the computational cost analysis in Section 5.2), as level
3 is directly adjacent to level 0 at x = 8.

0 122 104 86

Fig. 7. Grid with different refined regions in 1D.

We discretize (1) in space using both SBP-SAT FD (second and fourth order)
and continuous Ps−1 mass-lumped FEM. Both discretization approaches result in a
system of ODEs of the form (10). To advance (10) from 0 to the final time T we take
p3 = p1p2p3 local time-steps of size ∆t[Lmax] = ∆t/p3 for every global time-step ∆t.
Here, ∆t is the optimal time-step of the underlying RKs scheme on an equidistant
mesh of size hcoarse and thus independent of the refinement ratios p`.

MULTI-LEVEL LOCAL TIME-STEPPING 23

0 2 4 6 8 10 12

x

-1

-0.5

0

0.5

1
u

num sol

exact sol

grid

Fig. 8. Numerical and exact solution for MLTS-RK3 combined with P2 FE with hcoarse = 0.4
at time T = 5.

In Fig. 8 we present the exact and the numerical solution at time T = 5 on a mesh
with hcoarse = 0.4, p1 = 2, p2 = 3, and p3 = 4. Here we opt for a spatial discretization
with P2 mass-lumped FE and combine this with the MLTS-RK3 scheme to achieve
overall third order convergence. We then simultaneously reduce hcoarse and ∆t and
monitor the L2-error ‖u(·, T)−uNh (·)‖L2(Ω) (for FEM) or its discrete counterpart, the
l2-error (for SBP-SAT), at the final time T . The convergence rates at time T = 5
for the MLTS-RK schemes based on RK2, RK3 and RK4 combined with suitable
spatial discretizations to match their accuracy are shown in Figure 9. When using
SBP-SAT in space we use one grid point of overlap for MLTS-RK2 and MLTS-RK3,
and 3 grid points of overlap for MLTS-RK4, cf. Section 3.2. We observe the expected
convergence rates in all cases, which corroborates the accuracy analysis in Section 5.1.
Furthermore, we used the optimal time-step in all calculations without experiencing
instabilities, i.e., the MLTS-RKs methods show optimal stability behaviour, just as
their 1-level variant LTS-RKs – see [17].

6.2. Experiments in 2D. As a first 2D example we consider (1) with homo-
geneous Dirichlet conditions on the rectangular domain [−6, 6] × [−24, 24], with a
square and a circular inclusion. We set f = 0, c = 1, and σ = 0.01. As initial data we
use two Gaussian pulses centered at (0, 10) and (0,−10). We here use the 4th order
SBP-SAT discretization combined with MLTS-RK4. Figure 10 shows a coarse grid.
The leftmost picture highlights the coarsest grid cells, where we use the time-step ∆t.
The second picture from the left highlights grid cells that are up to 3 times smaller
than the coarsest cells; in these cells we use the local time-step ∆t/3. The cells high-
lighted in the third picture are 3-6 times smaller than the coarsest cells; here we use
the local time-step ∆t/6. Finally, the cells highlighted in the fourth picture are 6-12
times smaller than the coarsest cells; here we use the local time-step ∆t/12. That is,
we have Lmax = 3, p1 = 3, p2 = 2, and p3 = 2. The computations were performed

24 MARTIN ALMQUIST, MICHAELA MEHLIN

0.02 0.04 0.08

H

10
-6

10
-5

10
-4

10
-3

10
-2

l2
-e

rr
o

r

MLTSRK2

MLTSRK3

MLTSRK4

H
2

H
3

H
4

0.02 0.04 0.08 0.16

H

10
-8

10
-6

10
-4

10
-2

L
2
-e

rr
o

r

MLTSRK2

MLTSRK3

MLTSRK4

H
2

H
3

H
4

Fig. 9. Errors of the MLTS-RK schemes at time T = 5 as functions of H = hcoarse, combined
with SBP-SAT (left) and FEM (right).

Fig. 10. The different levels. In the red regions we use, from left to right, the (local) time steps
∆t, ∆t/3, ∆t/6, and ∆t/12. Around the square there are 3 levels, and around the circle there are
4 levels.

on a much finer grid with approximately 260000 grid points, where the coarsest grid
spacing was hcoarse ≈ 0.15. Figure 11 shows the time evolution of the solution from
t = 0 to t = 15.

To show the versatility of the multilevel approach in the presence of a more
complex geometry, we consider (1) combined with homogeneous Neumann boundary
conditions on the rectangle [−0.5, 2.5] × [−0.5, 1.5] with two enclosures forming a
narrow gap inside. We set f = 0, c = 1, σ = 0.01, and final time T = 2. As initial
data we choose a Gaussian pulse centered at (0.5, 0.5). To resolve the small features
in the gap and the initial localized pulse properly, we refine the mesh locally in those
two areas. This results in a mesh with 3 levels of refinement – see Fig. 12 for the
initial mesh and for zooms on refined regions. The elements in blue are up to 2 times
smaller than the coarse elements. The elements in green are up to 6 times finer and

MULTI-LEVEL LOCAL TIME-STEPPING 25

Fig. 11. Snapshots of the solution at times t = 0, 5, 10, 15.

finally the red ones are around 12 times smaller than the coarsest elements, i.e. we
have p1 = 2, p2 = 3 and p3 = 2. For a more accurate simulation we refine the initial
mesh in Fig. 12 three times, each time dividing every element into four. Thus, the
final mesh consists of about 220000 elements.

Fig. 12. Initial mesh and zoom on refined regions of initial mesh

We use P2 mass-lumped finite elements to discretize in space. To keep the 3rd
order convergence we solve the resulting ODE with the MLTS-RK3 scheme. The
initial condition excites a circular wave, which impinges on the obstacle. When the
wave reaches the narrow gap another circular wave is generated, which then interacts
with the propagating wave front. Snapshots of the solution at intermediate times can
be seen in Fig. 13.

7. Concluding Remarks. Starting from the Runge–Kutta-based local time-
stepping (LTS-RK) methods in [17], we have derived multi-level local time-stepping
(MLTS-RK) methods. If the spatial mesh contains nested patches of refinement, the
MLTS-RK methods apply the same multi-level structure to the time-stepping. Thus,
the appropriate time-step dictated by the CFL condition can be used within each
region of like-sized elements.

Suppose that we can distinguish Lmax + 1 levels of refinement in our mesh. That

26 MARTIN ALMQUIST, MICHAELA MEHLIN

Fig. 13. Two-dimensional example: the solution is shown at times t =0.19, 0.56, 0.74, 1.12,
1.49 and 1.86.

is, we can divide the mesh into Lmax + 1 levels or tiers of like-sized elements. We
number the levels from 0 to Lmax, with 0 corresponding to the coarsest level. To each
refined level we can associate a refinement ratio pL, L = 1, . . . , Lmax, where pL is
determined by the ratio between the smallest mesh sizes of levels L−1 and L. Let ∆t
denote the time-step dictated by the CFL condition in the coarsest part of the mesh.
During every global time-step of size ∆t, the MLTS-RK methods take p1 local time
steps of size ∆t[1] = ∆t/p1 with the degrees of freedom associated with level 1. During
every local time-step of size ∆t[1], the unknowns associated with level 2 are advanced
using p2 steps of size ∆t[2] = ∆t[1]/p2, and so on. Thus, during every global time-step,
the MLTS-RK method takes p1 · · · pL local time-steps of size ∆t/(p1 · · · pL) with the
unknowns associated with level L. The MLTS-RK methods are given by Algorithm
1. Due to the inherent recursion over the levels, the algorithms can be formulated
recursively. Nonetheless, they remain fully explicit and thus highly parallel.

If the underlying RK method has order k, we have proved that the corresponding

MULTI-LEVEL LOCAL TIME-STEPPING 27

MLTS-RK method retains the same accuracy, independently of the number of levels
and the refinement ratios. Our numerical experiments indicate that if an MLTS-
RK method of order k is combined with a Pq−1 finite element or qth order finite
difference spatial discretization, the numerical solution converges to the true solution
with optimal rate O(hq+∆tk) as h,∆t→ 0. Furthermore, our numerical experiments
suggest that the MLTS-RK methods preserve the optimal CFL condition at each level
of refinement.

The derivation of the MLTS-RK methods applies to a general explicit RK method
of arbitrary order, including e.g. low-storage RK methods [5] and the low-dispersion
low-dissipation RK methods [22].

Acknowledgments. We thank Marcus J. Grote for helpful discussions during
early stages of this work.

Appendix A. Runge-Kutta methods. In Table 4 we list the coefficients of
the classical s-stage explicit RK methods.

Table 4
Coefficients of the classical RKs methods.

0

1 1

1
2

1
2

0

1
2

1
2

1 -1 2

1
6

4
6

1
6

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(a) RK2 (order 2) (b) RK3 (order 3) (c) RK4 (order 4)

Appendix B. Derivation of modified ODE. The first modified equation was
derived in [17],

dy[1]

dt[1]
(t[1]) = B1y

[1](t[1]) + F1(t[1]) t[1] ∈ (0,∆t) ,

y[1](0) = yn ,

(46)

with matrix and right-hand side defined as

B1 = BP1 ,(47)

F1(t[1]) =

s−1∑
j=0

(
t[1]
)j

w
[1]
j + (I−P1)q0(tn + t[1]) + P1F(tn + t[1]) ,(48)

where

(49) w
[1]
j = αjB(I−P1)

(
Bjyn +

j∑
`=1

Bj−`q
(`−1)
0 (tn)

)
.

Here q0(t) denotes the interpolation polynomial of degree s0 − 1 going through the
points (tn + ci∆t,F(tn + ci∆t)), i = 1, . . . , s. Similarly, the second modified ODE is

dy[2]

dt[2]
(t[2]) = B2y

[2](t[2]) + F2(t[2]) , t[2] ∈ (0,∆t[1]) ,

y[2](0) = y[1]
n1
,

(50)

28 MARTIN ALMQUIST, MICHAELA MEHLIN

where

(51) B2 = B1P2 = BP2 ,

(52) F2(t[2]) =

s−1∑
j=0

(
t[2]
)j

w
[2]
j + (I−P2)q1(t[1]

n1
+ t[2]) + P2F1(t[1]

n1
+ t[2]) ,

(53) w
[2]
j = αjB1(I−P2)

(
Bj

1y
[1]
n1

+

j∑
`=1

Bj−`
1 q

(`−1)
1 (t[1]

n1
)

)
.

Here q1 is an interpolation polynomial of F1, going through the quadrature points

(t[1]
n1

+ ci∆t
[1],F1(t[1]

n1
+ ci∆t

[1])), i = 1, . . . , s .

We notice, however, that F1 is of the form (48) and thus consists mainly of polynomial
terms. Instead of approximating the entire F1 in the coarse part by an interpolation
polynomial we choose q1 as

q1(t[1]) =

s−1∑
j=0

(t[1])jw
[1]
j + (I−P1)q0(tn + t[1]) + P1r1(tn + t[1]) ,

where r1 is the unique interpolation polynomial of F of degree s0 − 1 going through
the points (

tn + t[1]
n1

+ ci∆t
[1],F(tn + t[1]

n1
+ ci∆t

[1])
)
, i = 1, . . . , s .

Hence q1 is also unique and the derivatives are given by

(54)
q

(`−1)
1 (t[1]

n1
) =

s−1∑
k=`−1

k!

(k − `+ 1)!
(t[1]
n1

)k−`+1w
[1]
k + (I−P1)q

(`−1)
0 (tn + t[1]

n1
)

+ P1r
(`−1)
1 (tn + t[1]

n1
).

Remark 4. For s = s0 the polynomial q1 coincides with the interpolation poly-
nomial in Section 4.1.

Inserting (54) into (53) and using that (P1 −P2)(I−P1) = 0 yields

(55)
w

[2]
j = αjB(P1 −P2)

(
(BP1)jy[1]

n1
+

j∑
`=1

(BP1)j−`

[
s−1∑
k=`−1

βk`(t
[1]
n1

)k−`+1w
[1]
k

+P1r
(`−1)
1 (tn + t[1]

n1
)
])

,

where we have introduced the notation

βk` =
k!

(k − `+ 1)!
.

MULTI-LEVEL LOCAL TIME-STEPPING 29

Using equations (51) and 52 we can write the ODE in (50) as

(56)

dy[2]

dt[2]
(t[2]) =

s−1∑
j=0

(
(t[1]
n1

+ t[2])jw
[1]
j + (t[2])jw

[2]
j

)
+ BP2y

[2](t[2])

+ (I−P1)q0(tn + t[1]
n1

+ t[2]) + (P1 −P2)r1(tn + t[1]
n1

+ t[2])

+ P2F(tn + t[1]
n1

+ t[2]).

We can repeat the above procedure to derive the Lth modified ODE,

dy[L]

dt[L]
(t[L]) =

s−1∑
j=0

L−1∑
`=0

(
t[L] + T`+1,L−1

)j
w

[`+1]
j + BLy[L](t[L])

+ PLF
(
t[L] + T0,L−1

)
+

L−1∑
`=0

(P` −P`+1)r`

(
t[L] + T0,L−1

)
,

y[L](0) = y[L−1]
nL−1

,

(57)

for t[L] ∈ (0,∆t[L−1]). The r` are the interpolation polynomials of F in the quadrature
points (

T0,` + ci∆t
[`],F

(
T0,` + ci∆t

[`]
))

, i = 1, . . . , s ,

and

(58)

w
[`+1]
j = αjB(P` −P`+1)

[
(BP`)

jy[`]
n`

+

j∑
λ=1

(BP`)
j−λr

(λ−1)
` (T0,`)

+

j∑
i=1

(BP`)
j−i

s−1∑
k=i−1

βki
∑̀
λ=1

(Tλ,`)
k−i+1

w
[λ]
k

]
.

REFERENCES

[1] L.D. Angulo, J. Alvarez, F.L. Teixeira, M.F. Pantoja and S.G. Garcia, Causal-path local
time-stepping in the discontinuous Galerkin method for Maxwell’s equation, J. Comput.
Phys., 256 (2014), pp. 678–695.

[2] U.M. Ascher, S.J. Ruuth and B. Wetton, Implicit-explicit methods for time-dependent
partial differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797–823.

[3] G.A. Baker and V.A. Dougalis, The effect of quadrature errors on finite element approxima-
tions for second order hyperbolic equations, SIAM J. Numer. Anal., 13 (1976), pp. 577–598.

[4] C. Canuto, M.Y. Hussaini, A. Quateroni and T.A. Zang, Spectral Methods: Fundamentals
in Single Domains, Springer, New York, 2006

[5] M.H. Carpenter and C.A. Kennedy, Fourth-Order 2N-Storage Runge-Kutta Schemes,
NASA report TM-109112, NASA Langley Research Center, 1994.

[6] J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for
linear wave equations, J. Comput. Appl. Math., 245 (2013), pp. 194–212.

[7] G. Cohen, P. Joly, J. Roberts and N. Tordjman, Higher order triangular finite elements
with mass lumping for the wave equation, SIAM J. Numer. Anal., 38 (2001), pp. 2047–2078.

[8] F. Collino, T. Fouquet and P. Joly, A conservative space-time mesh refinement method
for the 1-D wave equation. I. Construction, Numer. Math., 95 (2003), pp. 197–221.

[9] E. Constantinescu and A. Sandu, Multirate time stepping methods for hyperbolic conserva-
tion laws, J. Sci. Comput., 33 (2007), pp. 239–278.

[10] A. Demirel, J. Niegemann, K. Busch and M. Hochbruck, Efficient Multiple Time-Stepping
Algorithms of Higher Order, J. Comput. Phys., 285 (2015), pp. 133–148.

[11] E. Deriaz, Stability conditions for the numerical solution of convection-dominated problems
with skew-symmetric discretizations, SIAM J. Numer. Anal., 50 (2012), pp. 1058–1085.

30 MARTIN ALMQUIST, MICHAELA MEHLIN

[12] S. Descombes, S. Lanteri and L. Moya, Locally implicit time integration strategies in a
discontinuous Galerkin method, J. Sci. Comput., 56 (2013), pp. 190–218.

[13] J. Diaz and M.J. Grote, Energy conserving explicit local time-stepping for second-order wave
equations, SIAM J. Sci. Comput., 31 (2009), pp. 1985–2014.

[14] , Multi-level explicit local time-stepping methods for second-order wave equations, Comp.
Meth. Appl. Mech. Engin., 291 (2015), pp. 240–265.

[15] C.W. Gear and D.R. Wells, Multirate linear multistep methods, 24 (1984), BIT, pp. 484–502.
[16] M.J. Grote and T. Mitkova, High-order explicit local time-stepping methods for damped

wave equations, J. Comput. Appl. Math., 239 (2013), pp. 270–289.
[17] M.J. Grote, M. Mehlin and T. Mitkova, Runge–Kutta-Based Explicit Local Time-Stepping

Methods for Wave Propagation, SIAM J. Sci. Comput., 37 (2015), pp. A747–A775.
[18] M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method

for the wave equation, SIAM J. Numer. Anal. 44 (2006), pp. 2408–2431.
[19] M. Günther, A. Kværnø and P. Rentrop, Multirate partitioned Runge-Kutta methods, BIT,

41 (2001), pp. 504–514.
[20] E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff

Problems, Springer, 2000.
[21] M. Hochbruck and A. Sturm, Error analysis of a second order locally implicit method for

linear Maxwell’s equations, CRC 1173-Preprint 2015/1, Karlsruhe Institute of Technology,
2015.

[22] F.Q. Hu, M.Y. Hussaini and J.L. Manthey, Low-dissipation and low-dispersion Runge–Kutta
schemes for computational acoustics, J. Comput. Phys., 124 (1996), pp. 177–191

[23] W. Hundsdorfer, A. Mozartova, V. Savcenco, Monotonicity Conditions for Multirate and
Partitioned Explicit Runge–Kutta Schemes, Recent Developments in the Numerics of Non-
linear Hyperbolic Conservation Laws, Notes Numer. Fluid Mech. Multidiscip. Des. 120,
2013, pp. 177195.

[24] W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-
diffusion-reaction equations, Springer Series in Computational Mathematics, Springer,
Berlin, 33 (2003).

[25] A. Kanevsky, M.H. Carpenter, D. Gottlieb and J.S. Hesthaven, Application of implicit-
explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes, J. Comput.
Phys., 225 (2007), pp. 1753–1781

[26] G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element for CFD, 2nd ed., Oxford Univ.
Press, Oxford, 2005.

[27] J.E. Kozdon and L.C. Wilcox, Stable Coupling of Nonconforming, High-Order Finite Dif-
ference Methods, SIAM J. Sci. Comput., 38 (2016), pp. A923–A952.

[28] K. Mattsson and M.H. Carpenter, Stable and Accurate Interpolation Operators for High-
Order Multiblock Finite Difference Methods, SIAM J. Sci. Comput., 32 (2010), pp. 2298–
2320.

[29] K. Mattsson, F. Ham and G. Iaccarino, Stable and Accurate Wave-Propagation in Discon-
tinuous Media, J. Comput. Phys., 227 (2008), pp. 8753–8767.

[30] , Stable Boundary Treatment for the Wave Equation on Second-Order Form, J. Sci.
Comput., 41 (2009), pp. 366–383.

[31] K. Mattsson, Stable Boundary Treatment for the Wave Equation on Second-Order Form, J.
Sci. Comput., 51 (2011), pp. 650–682.

[32] W.A. Mulder, Higher-order mass-lumped finite elements for the wave equation, J. Comput.
Acoust., 09 (2001), pp. 671–680.

[33] F.L. Müller and C. Schwab, Finite Elements with mesh refinement for wave equations in
polygons, J. Comput. Appl. Math., 283 (2015), pp. 163–181.

[34] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave
propagation problems, Modél. Math. Anal. Numér., 40 (2006), pp. 815–841.

[35] J.R. Rice, Split Runge-Kutta method for simultaneous equations, J. of Res. Nat. Bureau of
Standards-B, 64B (1960), pp. 151–170.

[36] M. Rietmann, D. Peter, O. Schenk, B. Uar, and M.J. Grote, Load-balanced local time
stepping for large-scale wave propagation, In Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015 IEEE International, pp. 925–935.

[37] M. Svärd and J. Nordström, Review of summation-by-parts schemes for initialboundary-
value problems, J. Comput. Phys., 268 (2014), pp. 17–38.

[38] A. Taube, M. Dumbser, C.-D. Munz and R. Schneider, A high-order discontinuous Galerkin
method with time-accurate local time stepping for the Maxwell equations, Int. J. Numer.
Model., 22 (2009), pp. 77–103.

[39] J.G. Verwer, Component splitting for semi-discrete Maxwell equations, BIT Numer. Math.,

MULTI-LEVEL LOCAL TIME-STEPPING 31

51 (2010), pp. 427–445.
[40] K. Virta and K. Mattsson, Acoustic Wave Propagation in Complicated Geometries and

Heterogeneous Media, J. Sci. Comput., 61 (2014), pp. 90–118.
[41] S. Wang, K. Virta and G. Kreiss, High order finite difference methods for the wave equation

with non-conforming grid interfaces, J. Sci. Comput., (2016), pp. 1–27.

